Anand Classes offers a complete, free downloadable PDF of NCERT Solutions for Class 12 Maths Chapter 7 โ Integrals, Exercise 7.3 (Set-1), covering the method of integration using substitution, trigonometric identities and other integral techniques explained step-by-step in alignment with the latest CBSE/NCERT syllabus. Click the print button to download study material and notes.
NCERT Question 1: Evaluate the Integral
$$\int \sin^2(2x + 5)\; dx$$
Solution:
$$\int \sin^2(2x + 5)\; dx$$
Let $u = 2x + 5$
Then,
$$du = 2\; dx \Rightarrow dx = \frac{du}{2}$$
Substitute in the integral:
$$\int \sin^2(2x + 5)\; dx = \frac{1}{2} \int \sin^2(u)\; du$$
Using the identity $\sin^2(u) = \dfrac{1 – \cos(2u)}{2}$,
$$\frac{1}{2} \int \sin^2(u)\; du = \frac{1}{2} \int \frac{1 – \cos(2u)}{2}\; du$$
$$\frac{1}{2} \int \sin^2(u)\; du = \frac{1}{4} \int (1 – \cos(2u))\; du$$
Integrating term by term,
$$ \frac{1}{4} \int (1 – \cos(2u))\; du= \frac{1}{4} \left( u – \frac{1}{2} \sin(2u) \right) + C$$
Now substitute $u = 2x + 5$,
$$= \frac{1}{4} \left( 2x + 5 – \frac{1}{2} \sin(4x + 10) \right) + C$$
Hence, the required integral is
$$\boxed{\int \sin^2(2x + 5)\; dx = \frac{1}{4} \left( 2x + 5 – \frac{1}{2} \sin(4x + 10) \right) + C}$$
Get expertly formatted math solutions and detailed integration notes by Anand Classes, perfect for JEE, NEET, and CBSE board exams.
NCERT Question 2: Evaluate the Integral
$$\int \sin(3x)\cos(4x)\; dx$$
Solution:
$$\int \sin(3x)\cos(4x)\; dx$$
Using the identity $\sin(a)\cos(b) = \frac{1}{2}[\sin(a + b) + \sin(a – b)]$,
$$\int \sin(3x)\cos(4x)\; dx = \frac{1}{2} \int [\sin(7x) + \sin(-x)]\; dx$$
Simplify $\sin(-x) = -\sin(x)$,
$$= \frac{1}{2} \int [\sin(7x) – \sin(x)]\; dx$$
Integrate each term:
$$= \frac{1}{2} \left( -\frac{1}{7} \cos(7x) + \cos(x) \right) + C$$
Simplify,
$$= -\frac{1}{14} \cos(7x) + \frac{1}{2} \cos(x) + C$$
Hence, the required integral is
$$\boxed{\int \sin(3x)\cos(4x)\; dx = -\frac{1}{14}\cos(7x) + \frac{1}{2}\cos(x) + C}$$
Download expertly formatted math solutions by Anand Classes โ your trusted source for JEE, NEET, and CBSE exam preparation with detailed integration techniques.
NCERT Question 3: Evaluate the Integral
$$\int \cos(2x)\cos(4x)\cos(6x)\; dx$$
Solution:
$$\int \cos(2x)\cos(4x)\cos(6x)\; dx$$
Use the product-to-sum formula for three cosines:
$$\cos a\cos b\cos c = \frac{1}{4}\bigl(\cos(a+b+c)+\cos(a+b-c)+\\+\cos(a-b+c)+\cos(-a+b+c)\bigr)$$
With $a=2x,\; b=4x,\; c=6x$ we get
$$\cos(2x)\cos(4x)\cos(6x)
= \frac{1}{4}\bigl(\cos(12x)+\cos(0x)+\cos(4x)+\cos(8x)\bigr)$$
$$ \cos(2x)\cos(4x)\cos(6x) = \frac{1}{4}\bigl(\cos(12x)+1+\cos(4x)+\cos(8x)\bigr)$$
Therefore
$$
\int \cos(2x)\cos(4x)\cos(6x)\; dx
= \frac{1}{4}\int\bigl(1+\cos(4x)+\cos(8x)+\cos(12x)\bigr)\; dx $$
$$ = \frac{1}{4}\Bigl(x+\frac{1}{4}\sin(4x)+\frac{1}{8}\sin(8x)+\frac{1}{12}\sin(12x)\Bigr)+C$$
Final Answer
$$\boxed{\; \int \cos(2x)\cos(4x)\cos(6x)\; dx \\= \frac{1}{4}x+\frac{1}{16}\sin(4x)+\frac{1}{32}\sin(8x)+\frac{1}{48}\sin(12x)+C\;}$$
Download high quality notes and worked solutions by Anand Classes perfect for JEE, NEET and CBSE exam preparation.
NCERT Question 4: Evaluate the Integral
$$\displaystyle \int \sin^3(2x + 1)\; dx$$
Solution :
$$\displaystyle \int \sin^3(2x + 1)\; dx$$
Let $u = 2x + 1$
Then,
$$du = 2\; dx \Rightarrow dx = \frac{du}{2}$$
So,
$$\int \sin^3(2x + 1)\; dx = \frac{1}{2} \int \sin^3(u)\; du$$
Now, use the trigonometric identity $\sin^3(u) = \sin(u)\bigl(1 – \cos^2(u)\bigr)$:
$$\frac{1}{2} \int \sin^3(u)\; du = \frac{1}{2} \int \sin(u)\bigl(1 – \cos^2(u)\bigr)\; du$$
Let $\cos(u) = t \Rightarrow -\sin(u)\; du = dt$
Hence,
$$\frac{1}{2} \int \sin(u)\bigl(1 – \cos^2(u)\bigr)\; du = -\frac{1}{2} \int (1 – t^2)\; dt$$
Integrate:
$$-\frac{1}{2} \int (1 – t^2)\; dt =-\frac{1}{2}\left(t – \frac{t^3}{3}\right) + C$$
Substitute back $t = \cos(u)$:
$$-\frac{1}{2}\left(t – \frac{t^3}{3}\right) + C=-\frac{1}{2}\left(\cos(u) – \frac{\cos^3(u)}{3}\right) + C$$
Simplify:
$$-\frac{1}{2}\left(\cos(u) – \frac{\cos^3(u)}{3}\right) + C= -\frac{1}{2}\cos(u) + \frac{1}{6}\cos^3(u) + C$$
Now substitute $u = 2x + 1$:
$$\boxed{\; \int \sin^3(2x + 1)\; dx = -\frac{1}{2}\cos(2x + 1) + \frac{1}{6}\cos^3(2x + 1) + C\;}$$
For accurate and exam-focused integration solutions, explore Anand Classes โ your trusted guide for JEE, NEET, and CBSE mathematics preparation.
Access comprehensive integration notes and solved examples by Anand Classes, ideal for JEE, NEET, and CBSE exam preparation with clear MathJax explanations.
NCERT Question 5: Evaluate the Integral
$$\displaystyle \int \sin^3(x)\cos^3(x)\; dx$$
Solution :
We know the power-reduction identity:
$$\sin^3(x)\cos^3(x) = (\sin(x)\cos(x))^3 = \left(\frac{1}{2}\sin(2x)\right)^3 = \frac{1}{8}\sin^3(2x)$$
Hence,
$$\int \sin^3(x)\cos^3(x)\; dx = \frac{1}{8} \int \sin^3(2x)\; dx$$
Let $u = 2x \Rightarrow du = 2\; dx \Rightarrow dx = \frac{du}{2}$
So,
$$\frac{1}{8} \int \sin^3(2x)\; dx = \frac{1}{16} \int \sin^3(u)\; du$$
Now use $\sin^3(u) = \sin(u)(1 – \cos^2(u))$:
$$\frac{1}{16} \int \sin^3(u)\; du = \frac{1}{16} \int \sin(u)(1 – \cos^2(u))\; du$$
Let $\cos(u) = t \Rightarrow -\sin(u)\; du = dt$
Then,
$$\frac{1}{16} \int \sin(u)(1 – \cos^2(u))\; du = -\frac{1}{16} \int (1 – t^2)\; dt$$
Integrate:
$$-\frac{1}{16} \left(t – \frac{t^3}{3}\right) + C$$
Substitute back $t = \cos(u)$:
$$-\frac{1}{16} \left(\cos(u) – \frac{\cos^3(u)}{3}\right) + C$$
Simplify:
$$= -\frac{1}{16}\cos(u) + \frac{1}{48}\cos^3(u) + C$$
Now substitute $u = 2x$:
$$\boxed{\displaystyle \int \sin^3(x)\cos^3(x)\; dx = -\frac{1}{16}\cos(2x) + \frac{1}{48}\cos^3(2x) + C}$$
Master trigonometric integrals with Anand Classes โ detailed, exam-focused solutions ideal for JEE, NEET, and CBSE board preparation.
NCERT Question 6: Evaluate the Integral
$$\displaystyle \int \sin(x)\sin(2x)\sin(3x)\; dx$$
Solution
$$\displaystyle \int \sin(x)\sin(2x)\sin(3x)\; dx$$
We use the product-to-sum formula:
$$\sin A\sin B = \frac{1}{2}[\cos(A – B) – \cos(A + B)]$$
First, combine $\sin(x)\sin(3x)$:
$$\sin(x)\sin(3x) = \frac{1}{2}[\cos(2x) – \cos(4x)]$$
Now substitute into the integral:
$$\int \sin(x)\sin(2x)\sin(3x)\; dx = \frac{1}{2} \int [\cos(2x) – \cos(4x)]\sin(2x)\; dx$$
Expand:
$$= \frac{1}{2}\Bigl[\int \cos(2x)\sin(2x)\; dx – \int \cos(4x)\sin(2x)\; dx\Bigr]$$
(i) Evaluate $\displaystyle \int \cos(2x)\sin(2x)\; dx$
Use $\sin(2x)\cos(2x) = \dfrac{1}{2}\sin(4x)$
$$\int \cos(2x)\sin(2x)\; dx = \frac{1}{2}\int \sin(4x)\; dx = -\frac{1}{8}\cos(4x)$$
(ii) Evaluate $\displaystyle \int \cos(4x)\sin(2x)\; dx$
Use $\sin A\cos B = \dfrac{1}{2}[\sin(A + B) + \sin(A – B)]$
$$\sin(2x)\cos(4x) = \frac{1}{2}[\sin(6x) – \sin(2x)]$$
So,
$$\int \cos(4x)\sin(2x)\; dx = \frac{1}{2}\int [\sin(6x) – \sin(2x)]\; dx$$
$$= \frac{1}{2}\left(-\frac{1}{6}\cos(6x) + \frac{1}{2}\cos(2x)\right) = -\frac{1}{12}\cos(6x) + \frac{1}{4}\cos(2x)$$
Now substitute results back:
$$\int \sin(x)\sin(2x)\sin(3x)\; dx = \frac{1}{2}\Bigl[-\frac{1}{8}\cos(4x) – \left(-\frac{1}{12}\cos(6x) + \frac{1}{4}\cos(2x)\right)\Bigr]$$
Simplify:
$$= \frac{1}{2}\left(-\frac{1}{8}\cos(4x) + \frac{1}{12}\cos(6x) – \frac{1}{4}\cos(2x)\right)$$
$$= -\frac{1}{16}\cos(4x) + \frac{1}{24}\cos(6x) – \frac{1}{8}\cos(2x) + C$$
Final Answer
$$\boxed{\displaystyle \int \sin(x)\sin(2x)\sin(3x)\; dx = -\frac{1}{8}\cos(2x) – \frac{1}{16}\cos(4x) + \frac{1}{24}\cos(6x) + C}$$
For clear, step-by-step trigonometric integration methods, study with Anand Classes โ your trusted source for JEE, NEET, and CBSE mathematics preparation.
NCERT Question 7: Evaluate the Integral
$$\displaystyle \int \sin(4x)\sin(8x)\; dx$$
Solution :
$$\displaystyle \int \sin(4x)\sin(8x)\; dx$$
We use the product-to-sum identity:
$$\sin A\sin B = \frac{1}{2}[\cos(A – B) – \cos(A + B)]$$
Substitute $A = 4x$ and $B = 8x$:
$$\sin(4x)\sin(8x) = \frac{1}{2}[\cos(4x – 8x) – \cos(4x + 8x)]$$
$$= \frac{1}{2}[\cos(-4x) – \cos(12x)]$$
Since $\cos(-4x) = \cos(4x)$,
$$\sin(4x)\sin(8x) = \frac{1}{2}[\cos(4x) – \cos(12x)]$$
Now integrate:
$$\int \sin(4x)\sin(8x)\; dx = \frac{1}{2}\int [\cos(4x) – \cos(12x)]\; dx$$
Integrate each term:
$$= \frac{1}{2}\left(\frac{1}{4}\sin(4x) – \frac{1}{12}\sin(12x)\right) + C$$
Simplify:
$$= \frac{1}{8}\sin(4x) – \frac{1}{24}\sin(12x) + C$$
Final Answer
$$\boxed{\displaystyle \int \sin(4x)\sin(8x)\; dx = \frac{1}{8}\sin(4x) – \frac{1}{24}\sin(12x) + C}$$
For expertly formatted trigonometric integration solutions, study with Anand Classes โ comprehensive notes for JEE, NEET, and CBSE mathematics preparation.
