NCERT Solutions Trigonometric Functions Exercise-3.1 Class 11 Math pdf free download

⭐⭐⭐⭐⭐ (5/5 from 34789 reviews)

Q.1 : Find the radian measures corresponding to the following degree measures:
(i) 25° (ii) -47°30′ (iii) 240° (iv) 520°

Solution:

(i) We know that
$$180^\circ = \pi \text{ rad}$$
So,
$$1^\circ = \frac{\pi}{180} \text{ rad}$$

Hence,
$$25^\circ = \frac{\pi}{180} \times 25 = \frac{5\pi}{36} \text{ rad}$$

(ii) We know that
$$60′ = 1^\circ \implies 30′ = \frac{1}{2}^\circ$$

So,
$$-47^\circ 30′ = -47\frac{1}{2}^\circ = -\frac{95}{2}^\circ$$

Converting to radians:
$$-\frac{95}{2} \cdot \frac{\pi}{180} = -\frac{19\pi}{72} \text{ rad}$$

(iii)
$$240^\circ = 240 \cdot \frac{\pi}{180} = \frac{4\pi}{3} \text{ rad}$$

(iv)
$$520^\circ = 520 \cdot \frac{\pi}{180} = \frac{26\pi}{9} \text{ rad}$$

Hence, the radian measures are:
$$(i) \frac{5\pi}{36}, \quad (ii) -\frac{19\pi}{72}, \quad (iii) \frac{4\pi}{3}, \quad (iv) \frac{26\pi}{9}$$


Q.2 : Find the degree measures corresponding to the following radian measures (Use $\pi = 22/7$):
(i) $\frac{11}{16}$ (ii) $-4$ (iii) $\frac{5\pi}{3}$ (iv) $\frac{7\pi}{6}$

Solution:

(i)
$$\frac{11}{16} \text{ rad} = \frac{11}{16} \cdot \frac{180^\circ}{\pi}$$
$$= \frac{11}{16} \cdot \frac{180 \cdot 7}{22}$$
$$= \frac{11 \cdot 180 \cdot 7}{16 \cdot 22} = \frac{315}{8}^\circ = 39\frac{3}{8}^\circ$$

Separating degrees, minutes, and seconds:
$$39\frac{3}{8}^\circ = 39^\circ + \frac{3}{8}^\circ$$
$$\frac{3}{8}^\circ \cdot 60′ = 22.5′ = 22′ + 0.5’$$
$$0.5′ \cdot 60” = 30”$$

Hence,
$$\frac{11}{16} \text{ rad} = 39^\circ 22′ 30”$$

(ii)
$$-4 \text{ rad} = -4 \cdot \frac{180^\circ}{\pi} = -4 \cdot \frac{180 \cdot 7}{22} = -229\frac{1}{11}^\circ$$

Separating degrees, minutes, and seconds:
$$\frac{1}{11}^\circ \cdot 60′ = 5\frac{5}{11}’ = 5′ + \frac{5}{11}’$$
$$\frac{5}{11}’ \cdot 60” = 27”$$

Hence,
$$-4 \text{ rad} = -229^\circ 5′ 27”$$

(iii)
$$\frac{5\pi}{3} \text{ rad} = \frac{5\pi}{3} \cdot \frac{180^\circ}{\pi} = \frac{5 \cdot 180}{3}^\circ = 300^\circ$$

(iv)
$$\frac{7\pi}{6} \text{ rad} = \frac{7\pi}{6} \cdot \frac{180^\circ}{\pi} = \frac{7 \cdot 180}{6}^\circ = 210^\circ$$

Hence, the degree measures are:
$$(i) 39^\circ 22′ 30”, \quad (ii) -229^\circ 5′ 27”, \quad (iii) 300^\circ, \quad (iv) 210^\circ$$


Q.3 : A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution:

Number of revolutions made by wheel in one minute (60 seconds) = 360

Number of revolutions made by wheel in one second $=\frac{360}{60} = 6$

Angle (in radians) the wheel turns in one revolution = $360^\circ = 2\pi \text{ radians}$

Angle (in radians) the wheel turns in 6 revolutions = $2\pi \times 6 = 12\pi$

Hence, the wheel turns = $12\pi \text{ radians in one second.}$


Q.4 : Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi = 22/7$).

Solution:

Angle subtended by an arc at the centre of a circle = $\theta = \frac{l}{r} \text{ radians}$

Where $l$ = length of arc, $r$ = radius of circle.

Substitute values:

$$\theta = \frac{22}{100} \text{ radians}$$

Convert to degrees:

$$\theta = \frac{22}{100} \cdot \frac{180}{\pi} = \frac{22}{100} \cdot 180 \cdot \frac{7}{22} = \frac{126}{10} = 12.6^\circ$$

Separating degrees and minutes:

$$12.6^\circ = 12^\circ + 0.6^\circ$$

$$0.6^\circ \cdot 60′ = 36’$$

Hence, the angle is: $12^\circ 36’$


Q.5 : In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Solution:

Radius of the circle = $r = \frac{40}{2} = 20 \text{ cm}$

Length of chord = $AB = 20 \text{ cm}$

Let the centre be (O) and the chord be (AB).

$$AO = BO = 20 \text{ cm (radii)}$$

Since (AB = AO = BO), ($\triangle AOB$) is equilateral.

In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord
(AB = AO = BO), (triangle AOB) is equilateral

Hence,

$$\angle AOB = 60^\circ = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \text{ radians}$$

Length of minor arc (AB = l):

$$\theta = \frac{l}{r} \implies \frac{\pi}{3} = \frac{l}{20} \implies l = \frac{20\pi}{3} \text{ cm}$$

Answer: $l = \frac{20\pi}{3} \text{ cm}$


Q.6 : If in two circles, arcs of the same length subtend angles (60o) and (75o) at the centre, find the ratio of their radii.

Solution:

Let radii of the two circles be ($r_1$) and ($r_2$), and the subtended angles be:

$$\theta_1 = 60^\circ = \frac{\pi}{3} \text{ rad}, \quad \theta_2 = 75^\circ = \frac{5\pi}{12} \text{ rad}$$

Since arcs are equal:

$$l = r_1 \theta_1 = r_2 \theta_2 \implies r_1 \cdot \frac{\pi}{3} = r_2 \cdot \frac{5\pi}{12} \implies \frac{r_1}{r_2} = \frac{5}{4}$$

Answer: $r_1 : r_2 = 5 : 4$


Q.7 : Find the angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length: (i) 10 cm, (ii) 15 cm, (iii) 21 cm

Solution:

Radius of the pendulum = $r = 75 \text{ cm}$

(i) Arc length = 10 cm:

$$\theta = \frac{l}{r} = \frac{10}{75} = \frac{2}{15} \text{ rad}$$

(ii) Arc length = 15 cm:

$$\theta = \frac{l}{r} = \frac{15}{75} = \frac{1}{5} \text{ rad}$$

(iii) Arc length = 21 cm:

$$\theta = \frac{l}{r} = \frac{21}{75} = \frac{7}{25} \text{ rad}$$

Answers:

$$(i) \frac{2}{15} \text{ rad}, \quad (ii) \frac{1}{5} \text{ rad}, \quad (iii) \frac{7}{25} \text{ rad}$$

NCERT Solutions Miscellaneous Exercise ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS