Vector Algebra NCERT Solutions Miscellaneous Exercise Chapter-10 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 74981 reviews)

NCERT Question.10 : The two adjacent sides of a parallelogram are
($2\hat{i}-4\hat{j}+5\hat{k})$ and ($\hat{i}-2\hat{j}-3\hat{k})$.
Find the unit vector parallel to its diagonal and also find its area.

Solution
Given vectors

$$
\vec{a}=2\hat{i}-4\hat{j}+5\hat{k},\qquad
\vec{b}=\hat{i}-2\hat{j}-3\hat{k}
$$

Diagonals of the parallelogram are $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

One Diagonal of the parallelogram

$$
\vec{a}+\vec{b}=(2+1)\hat{i}+(-4-2)\hat{j}+(5-3)\hat{k}
$$

$$
\vec{a}+\vec{b}=3\hat{i}-6\hat{j}+2\hat{k}
$$

Unit vector parallel to diagonal

Magnitude:
$$
\lvert \vec{a}+\vec{b} \rvert =\sqrt{3^2+(-6)^2+2^2}
$$
$$
\lvert \vec{a}+\vec{b} \rvert =\sqrt{9+36+4}=\sqrt{49}=7
$$

Unit vector:
$$
\hat{u}=\frac{3\hat{i}-6\hat{j}+2\hat{k}}{7}
$$

$$
\hat{u}=\frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}
$$

Another Diagonal of the parallelogram

$$
\vec{a}-\vec{b}=(2-1)\hat{i}+(-4+2)\hat{j}+(5+3)\hat{k}
$$

$$
\vec{a}-\vec{b}=\hat{i}-2\hat{j}+8\hat{k}
$$

Unit vector parallel to diagonal

Magnitude:
$$
\lvert \vec{a}-\vec{b} \rvert =\sqrt{1^2+(-2)^2+8^2}
$$
$$
\lvert \vec{a}-\vec{b} \rvert =\sqrt{1+4+64}=\sqrt{69}
$$

Unit vector:
$$
\hat{v}=\frac{\hat{i}-2\hat{j}+8\hat{k}}{{\sqrt{69}}}
$$

$$
\hat{v}=\frac{1}{\sqrt{69}}\hat{i}-\frac{2}{\sqrt{69}}\hat{j}+\frac{8}{\sqrt{69}}\hat{k}
$$

Area of the parallelogram
$$
\text{Area}=\lvert \vec{a}\times \vec{b} \rvert
$$

Compute cross product:
$$
\vec{a}\times \vec{b}=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \
2 & -4 & 5 \
1 & -2 & -3
\end{vmatrix}
$$

$$
\vec{a}\times \vec{b}
=\hat{i}(12+10)-\hat{j}(-6-5)+\hat{k}(-4+4)
$$

$$
\vec{a}\times \vec{b}
=22\hat{i}+11\hat{j}
$$

Magnitude:
$$
\lvert \vec{a}\times \vec{b} \rvert
=\sqrt{22^2+11^2}
$$
$$
\lvert \vec{a}\times \vec{b} \rvert=\sqrt{484+121}=\sqrt{605}=11\sqrt{5}
$$

Area of parallelogram

$$
\boxed{\sqrt{605}=11\sqrt{5}}
$$

Final Answer

  • Unit vector parallel to diagonal:
    $$
    \boxed{\frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}}
    $$
    • $$
      \boxed{\frac{1}{\sqrt{69}}\hat{i}-\frac{2}{\sqrt{69}}\hat{j}+\frac{8}{\sqrt{69}}\hat{k}}$$
  • Area of parallelogram:
    $$
    \boxed{\sqrt{605}=11\sqrt{5}}
    $$

Top quality study material like this is regularly prepared by Anand Classes to help students master vectors for JEE and CBSE exams. Upgrade your preparation with more detailed notes and solved examples from Anand Classes.


NCERT Question.11 : Show that the direction cosines of a vector equally inclined to the axes $OX, OY$, and $OZ$ are
$$\pm\left(\frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}}\right)$$

Solution
Assume that the vector is equally inclined to all three coordinate axes.
Let the angle made with each axis be $\alpha$.

The direction cosines are
$$l=\cos\alpha,\quad m=\cos\alpha,\quad n=\cos\alpha.$$

Using the identity for direction cosines:
$$l^2+m^2+n^2=1.$$

Substitute the values:
$$\cos^2\alpha+\cos^2\alpha+\cos^2\alpha=1$$
$$3\cos^2\alpha=1$$
$$\cos^2\alpha=\frac{1}{3}$$
$$\cos\alpha=\pm\frac{1}{\sqrt{3}}.$$

Hence ehe direction cosines are
$$l=m=n=\pm\frac{1}{\sqrt{3}}.$$

Final Result

$$\boxed{\pm\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)}$$

For more vector algebra explanations, solved NCERT questions, and high-quality study material for CBSE and JEE, explore the detailed notes and resources provided by Anand Classes.


NCERT Question.12 : Let
$$\vec{a}=\hat{i}+4\hat{j}+2\hat{k},\qquad
\vec{b}=3\hat{i}-2\hat{j}+7\hat{k},\qquad
\vec{c}=2\hat{i}-\hat{j}+4\hat{k}.$$
Find a vector $\vec{d}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$ and satisfies $\vec{c}\cdot\vec{d}=15$.

Solution

Let $\vec{d}=d_{1}\hat{i}+d_{2}\hat{j}+d_{3}\hat{k}$.
Perpendicularity to $\vec{a}$ and $\vec{b}$ gives

$$\vec{d}\cdot\vec{a}=(d_{1}\hat{i}+d_{2}\hat{j}+d_{3}\hat{k})\cdot (\hat{i}+4\hat{j}+2\hat{k})=0$$

$$\vec{d}\cdot\vec{a}=d_{1}+4d_{2}+2d_{3}=0 \tag{1}$$

$$\vec{d}\cdot\vec{b}=(d_{1}\hat{i}+d_{2}\hat{j}+d_{3}\hat{k})\cdot (3\hat{i}-2\hat{j}+7\hat{k})=0$$

$$\vec{d}\cdot\vec{b}=3d_{1}-2d_{2}+7d_{3}=0 \tag{2}$$

The condition with $\vec{c}$ is

$$\vec{c}\cdot\vec{d}=(2\hat{i}-\hat{j}+4\hat{k}) \cdot (d_{1}\hat{i}+d_{2}\hat{j}+d_{3}\hat{k})=15$$

$$\vec{c}\cdot\vec{d}=2d_{1}-d_{2}+4d_{3}=15 \tag{3}$$

Solve the linear system (1), (2), (3). Eliminating variables yields
$$d_{1}=\frac{160}{3},\qquad d_{2}=-\frac{5}{3},\qquad d_{3}=-\frac{70}{3}.$$

Thus
$$\boxed{\displaystyle \vec{d}=\frac{160}{3}\hat{i}-\frac{5}{3}\hat{j}-\frac{70}{3}\hat{k}
=\frac{1}{3}\bigl(160\hat{i}-5\hat{j}-70\hat{k}\bigr).}$$

Quick verification

$$\vec{d}\cdot\vec{a}
=\tfrac{160}{3}+4\bigl(-\tfrac{5}{3}\bigr)+2\bigl(-\tfrac{70}{3}\bigr)
=\tfrac{160-20-140}{3}=0$$

$$\vec{d}\cdot\vec{b}
=3\bigl(\tfrac{160}{3}\bigr)-2\bigl(-\tfrac{5}{3}\bigr)+7\bigl(-\tfrac{70}{3}\bigr)
=\tfrac{160+10-490}{3}=0$$

$$\vec{c}\cdot\vec{d}
=2\bigl(\tfrac{160}{3}\bigr)-\bigl(-\tfrac{5}{3}\bigr)+4\bigl(-\tfrac{70}{3}\bigr)
=\tfrac{320+5-280}{3}=\tfrac{45}{3}=15$$

All conditions are satisfied.

Prepare for exams with clear, stepwise vector solutions and downloadable notes from Anand Classes, ideal for CBSE and JEE practice and revision.


NCERT Question.13 :The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the vectors $2\hat{i}+4\hat{j}-5\hat{k}$ and $\lambda\hat{i}+2\hat{j}+3\hat{k}$ is equal to $1$. Find the value of $\lambda$.

Solution
Let
$$
\vec{a}=\hat{i}+\hat{j}+\hat{k},\qquad
\vec{b}=2\hat{i}+4\hat{j}-5\hat{k},\qquad
\vec{c}=\lambda\hat{i}+2\hat{j}+3\hat{k}.
$$

Form the sum
$$
\vec{d}=\vec{b}+\vec{c}=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}.
$$

The unit vector along $\vec{d}$ is
$$
\hat{d}=\frac{\vec{d}}{|\vec{d}|}
=\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}
{\sqrt{(2+\lambda)^2+6^2+(-2)^2}}
=\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}
{\sqrt{\lambda^2+4\lambda+44}}.
$$

Given the condition :

$$\vec{a}\cdot\hat{d}=1,$$

$$
\frac{\vec{a}\cdot\vec{d}}{|\vec{d}|}=1
$$

Compute
$$
\vec{a}\cdot\vec{d}=(1)(2+\lambda)+(1)(6)+(1)(-2)=\lambda+6.
$$

Thus,
$$
\frac{\lambda+6}{\sqrt{\lambda^2+4\lambda+44}}=1.
$$

Square both sides:
$$
(\lambda+6)^2=\lambda^2+4\lambda+44
$$

$$
\lambda^2+12\lambda+36=\lambda^2+4\lambda+44
$$

$$
8\lambda=8
$$

$$
\lambda=1.
$$

Final Answer

$$
\boxed{\lambda=1}
$$

Get well-structured, exam-oriented vector algebra solutions and downloadable notes from Anand Classes โ€” ideal for JEE, CBSE, and competitive exam preparation.


NCERT Question.14 : If $\vec a,\vec b,\vec c$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec a+\vec b+\vec c$ is equally inclined to $\vec a,\vec b,$ and $\vec c$.

Solution
Let the common magnitude be $p$, so
$$|\vec a|=|\vec b|=|\vec c|=p.$$

Mutual perpendicularity gives
$$\vec a\cdot\vec b=\vec b\cdot\vec c=\vec c\cdot\vec a=0.$$

Let the angles made by $\vec a+\vec b+\vec c$ with $\vec a,\vec b,\vec c$ be $\theta_1,\theta_2,\theta_3$ respectively. Then
$$\cos\theta_1=\frac{(\vec a+\vec b+\vec c)\cdot\vec a}{\lvert\vec a+\vec b+\vec c\rvert|\vec a|}.$$

Compute the numerator using orthogonality:
$$
(\vec a+\vec b+\vec c)\cdot\vec a
=\vec a\cdot\vec a+\vec b\cdot\vec a+\vec c\cdot\vec a
=|\vec a|^2+0+0=|\vec a|^2.
$$

Hence
$$\cos\theta_1=\frac{|\vec a|^2}{\lvert\vec a+\vec b+\vec c\rvert|\vec a|}
=\frac{|\vec a|}{\lvert\vec a+\vec b+\vec c\rvert}.$$

Similarly,
$$\cos\theta_2=\frac{(\vec a+\vec b+\vec c)\cdot\vec b}{\lvert\vec a+\vec b+\vec c\rvert|\vec b|}
=\frac{|\vec b|}{\lvert\vec a+\vec b+\vec c\rvert},$$

$$\cos\theta_3=\frac{(\vec a+\vec b+\vec c)\cdot\vec c}{\lvert\vec a+\vec b+\vec c\rvert|\vec c|}
=\frac{|\vec c|}{\lvert\vec a+\vec b+\vec c\rvert}.$$

Since $|\vec a|=|\vec b|=|\vec c|=p$, we get
$$\cos\theta_1=\cos\theta_2=\cos\theta_3=\frac{p}{\lvert\vec a+\vec b+\vec c\rvert},$$

so
$$\theta_1=\theta_2=\theta_3.$$

Therefore the vector $\vec a+\vec b+\vec c$ is equally inclined to $\vec a,\vec b,$ and $\vec c$.

Final conclusion

$$\boxed{\text{The angles } \theta_1,\theta_2,\theta_3\text{ are equal, so } \vec a+\vec b+\vec c \text{ is equally inclined to } \vec a,\vec b,\vec c.}$$

Download notes by Anand Classes for more worked examples on vectors and geometry, perfect for JEE and CBSE revision and clear step-by-step practice material.


NCERT Question.15 :Prove that
$$ (\vec a+\vec b)\cdot(\vec a+\vec b)=|\vec a|^2+|\vec b|^2 $$
if and only if $\vec a$ and $\vec b$ are perpendicular, given $\vec a\neq\vec 0,\ \vec b\neq\vec 0$.

Solution :
Expand the left hand side using bilinearity of the dot product:
$$
(\vec a+\vec b)\cdot(\vec a+\vec b)
=\vec a\cdot\vec a+\vec a\cdot\vec b+\vec b\cdot\vec a+\vec b\cdot\vec b.
$$

Using $\vec a\cdot\vec a=|\vec a|^2\;$, $\;\vec b\cdot\vec b=|\vec b|^2$ and commutativity $\vec a\cdot\vec b=\vec b\cdot\vec a$, the above expression becomes
$$
(\vec a+\vec b)\cdot(\vec a+\vec b)
=|\vec a|^2+2\vec a\cdot\vec b+|\vec b|^2.
$$

Now compare with the given expression $|\vec a|^2+|\vec b|^2$.
$$
(\vec a+\vec b)\cdot(\vec a+\vec b)=|\vec a|^2+|\vec b|^2,
$$

then from the expansion we get
$$
|\vec a|^2+2\vec a\cdot\vec b+|\vec b|^2=|\vec a|^2+|\vec b|^2,
$$

hence
$$
2\vec a\cdot\vec b=0\quad\Longrightarrow\quad \vec a\cdot\vec b=0.
$$

So $\vec a$ is perpendicular to $\vec b$.

(โ‡) Conversely, if $\vec a\cdot\vec b=0$ then the expansion above reduces to
$$
(\vec a+\vec b)\cdot(\vec a+\vec b)=|\vec a|^2+|\vec b|^2,
$$

so the stated equality holds.

Conclusion

$$\boxed{(\vec a+\vec b)\cdot(\vec a+\vec b)=|\vec a|^2+|\vec b|^2\ \Longleftrightarrow\ \vec a\cdot\vec b=0,}$$

i.e. the equality holds exactly when $\vec a$ and $\vec b$ are perpendicular (nonzero condition only rules out the trivial zero cases).

Build strong vector intuition with clear worked solutions and concise notes from Anand Classes, perfect for CBSE and JEE preparation.


NCERT Question 16: Choose the correct answer
If $ \theta $ is the angle between two vectors $ \vec{a} $ and $ \vec{b} $, then
$ \vec{a} \cdot \vec{b} \ge 0 $ only when:
(A) $0 < \theta < \frac{\pi}{2}$
(B) $0 \le \theta \le \frac{\pi}{2}$
(C) $0 < \theta < \pi$
(D) $0 \le \theta \le \pi$

Solution
Let $ \theta $ be the angle between two vectors $ \vec{a} $ and $ \vec{b} $.

We know that
$$ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}| \cos \theta $$

Given:
$$ \vec{a} \cdot \vec{b} \ge 0 $$

So,
$$ \cos \theta \ge 0 $$

This inequality holds when:
$$ 0 \le \theta \le \frac{\pi}{2} $$

Thus, the correct answer is (B) $,0 \le \theta \le \frac{\pi}{2}$.

High-quality study notes like this help strengthen conceptual clarity for vector algebra, ideal for JEE and CBSE learners looking for concise explanations prepared in the style of Anand Classes.


NCERT Question 17: Choose the correct answer
Let $ \vec{a} $ and $ \vec{b} $ be two unit vectors and $ \theta $ is the angle between them. Then $ \vec{a} + \vec{b} $ is a unit vector if:
(A) $ \theta = \frac{\pi}{4} $
(B) $ \theta = \frac{\pi}{3} $
(C) $ \theta = \frac{\pi}{2} $
(D) $ \theta = \frac{2\pi}{3} $

Solution
Given two unit vectors $ \vec{a} $ and $ \vec{b} $:

$$ |\vec{a}| = |\vec{b}| = 1 $$

If $ \vec{a} + \vec{b} $ is a unit vector, then

$$ |\vec{a} + \vec{b}| = 1 $$

Now,

$$ |\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) $$

$$ |\vec{a} + \vec{b}|^2= \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} $$

$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 $$

$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{a}| |\vec{b}|\cos\theta + |\vec{b}|^2 $$

Substituting $ |\vec{a}| = |\vec{b}| = 1 , |\vec{a} + \vec{b}| = 1$:

$$ 1 = 1 + 2 \cos\theta + 1 $$

$$ 1 = 2 + 2 \cos\theta $$

$$ 2 \cos\theta = -1 $$

$$ \cos\theta = -\frac{1}{2} $$

Thus,

$$ \theta = \frac{2\pi}{3} $$

So, the correct answer is (D) $ \theta = \dfrac{2\pi}{3} $.

Strengthen your understanding of vectors with clear, exam-focused solutions prepared in the style of Anand Classesโ€”perfect for CBSE, ISC, and JEE aspirants looking for reliable study support.


NCERT Question 18 : Choose the correct answer. The value of
$$ \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) $$
is:
(A) 0 (B) โˆ’1 (C) 1 (D) 3

Solution
Evaluate each term using standard vector identities.
We know:

$$ \hat{i} \times \hat{k} = -\hat{j} $$

$$ \hat{i} \times \hat{j} = \hat{k} $$

$$ \hat{j} \times \hat{k} = \hat{i} $$

Now compute each dot product:

$$ \hat{i} \cdot (\hat{j} \times \hat{k}) = \hat{i} \cdot \hat{i} = 1 $$

$$ \hat{j} \cdot (\hat{i} \times \hat{k}) = \hat{j} \cdot (-\hat{j}) = -1 $$

$$ \hat{k} \cdot (\hat{i} \times \hat{j}) = \hat{k} \cdot \hat{k} = 1 $$

Hence :

$$ \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) =1 – 1 + 1 = 1 $$

$$ \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) = 1 $$

Thus, the correct answer is (C) 1.

Enhance your understanding of vector operations with detailed step-by-step explanations crafted in the style of Anand Classesโ€”ideal for CBSE, ISC, and JEE students aiming for high-accuracy preparation.


NCERT Question 19 : Choose the correct answer.
If $ \theta $ is the angle between any two vectors $ \vec{a} $ and $ \vec{b} $, then
$$ |\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}| $$
when $ \theta $ is equal to:
(A) $0$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\pi$

Solution
Let $ \theta $ be the angle between $ \vec{a} $ and $ \vec{b} $.

Since $ \vec{a} $ and $ \vec{b} $ are non-zero vectors, their magnitudes are positive.

We use the formulas:

$$ |\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta $$

$$ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta $$

The given condition is:

$$ |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta $$

Dividing both sides by $|\vec{a}| |\vec{b}|$ (non-zero):

$$ \cos \theta = \sin \theta $$

Thus:

$$ \tan \theta = 1 $$

$$ \theta = \frac{\pi}{4} $$

Therefore, the correct answer is (B) $\dfrac{\pi}{4}$.

Master such vector concepts with the structured learning style of Anand Classesโ€”highly effective for CBSE, ISC, and competitive exams like JEE.


NCERT Question.4 : If $\vec{a}$, $\vec{b}$, $\vec{c}$ are such that $|\vec{a}|=3$, $|\vec{b}|=4$, $|\vec{c}|=5$ and each of them is perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

Solution
The condition “each vector is perpendicular to the sum of the other two” gives the three dot product relations
$$\vec{a}\cdot(\vec{b}+\vec{c})=0,\qquad
\vec{b}\cdot(\vec{c}+\vec{a})=0,\qquad
\vec{c}\cdot(\vec{a}+\vec{b})=0.$$

Expand each
$$\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}=0\quad(1),\qquad
\vec{b}\cdot\vec{c}+\vec{b}\cdot\vec{a}=0\quad(2),\qquad
\vec{c}\cdot\vec{a}+\vec{c}\cdot\vec{b}=0\quad(3).$$

Add (1), (2) and (3). Using commutativity of dot product we get
$$2\bigl(\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c}\bigr)=0$$

so
$$\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c}=0.$$

Now compute the square of the magnitude required
$$
|\vec{a}+\vec{b}+\vec{c}|^2
=|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2
+2\bigl(\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c}\bigr)$$

$$ |\vec{a}+\vec{b}+\vec{c}|^2=|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2\cdot 0.
$$

Substitute the given magnitudes
$$|\vec{a}+\vec{b}+\vec{c}|^2=3^2+4^2+5^2=9+16+25=50.$$

Hence
$$|\vec{a}+\vec{b}+\vec{c}|=\sqrt{50}=5\sqrt{2}.$$

Final Result

$$\boxed{|\vec{a}+\vec{b}+\vec{c}|=5\sqrt{2},}$$

Build strong vector intuition with clear worked solutions and concise notes from Anand Classes, perfect for CBSE and JEE preparation.

โฌ…๏ธ NCERT Solutions Exercise 11.1 NCERT Solutions Miscellaneous Exercise (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS