Vector Algebra NCERT Solutions Exercise 10.2 Chapter-10 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 59356 reviews)

NCERT Question.11 : Show that the vectors
$\vec{a} = 2\hat{i} – 3\hat{j} + 4\hat{k}$ and $\vec{b} = -4\hat{i} + 6\hat{j} – 8\hat{k}$ are collinear.

Solution
Given:
$$\vec{b} = -4\hat{i} + 6\hat{j} – 8\hat{k}$$

Notice that:
$$\vec{b} = -2(2\hat{i} – 3\hat{j} + 4\hat{k})$$

$$\vec{b} = -2\vec{a}$$

We know that two vectors are collinear if:
$$\vec{b} = \lambda \vec{a}$$

for some scalar $\lambda$.

Here, $\lambda = -2$.

Hence, the vectors $\vec{a}$ and $\vec{b}$ are collinear.

Final Result
$$\boxed{\text{Vectors } \vec{a} \text{ and } \vec{b} \text{ are collinear}}$$

Master vector relationships and collinearity with Anand Classesโ€™ detailed examples, perfect for CBSE and JEE preparation.


NCERT Question.12 : Find the direction cosines of the vector
$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$

Solution
Let
$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$

Magnitude of $\vec{a}$:
$$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2}$$

$$|\vec{a}| = \sqrt{1 + 4 + 9} = \sqrt{14}$$

Direction cosines $(\ell, m, n)$ are given by:
$$
\ell = \frac{x}{|\vec{a}|} = \frac{1}{\sqrt{14}}, \quad
m = \frac{y}{|\vec{a}|} = \frac{2}{\sqrt{14}}, \quad
n = \frac{z}{|\vec{a}|} = \frac{3}{\sqrt{14}}
$$

Thus, the direction cosines of $\vec{a}$ are:
$$(\ell, m, n) = \left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$$

Final Result
$$\boxed{\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)}$$

Sharpen your vector skills with step-by-step solutions and clear explanations from Anand Classes, ideal for CBSE and competitive exams like JEE.


NCERT Question.13 : Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$, in the direction from $A$ to $B$.

Solution
Let the position vectors of points $A$ and $B$ be $\overrightarrow{OA}$ and $\overrightarrow{OB}$ respectively.

The vector from $A$ to $B$ is:
$$\overrightarrow{AB} = \overrightarrow{OB} – \overrightarrow{OA}$$

Compute components:
$$
\overrightarrow{AB} = (-1-1)\hat{i} + (-2-2)\hat{j} + (1-(-3))\hat{k}
$$

$$
\overrightarrow{AB} = -2\hat{i} – 4\hat{j} + 4\hat{k}
$$

Magnitude of $\overrightarrow{AB}$:
$$
|\overrightarrow{AB}| = \sqrt{(-2)^2 + (-4)^2 + 4^2}
= \sqrt{4 + 16 + 16}
= \sqrt{36}
= 6
$$

Direction cosines:
$$
\ell = \frac{-2}{6} = -\frac{1}{3}, \quad
m = \frac{-4}{6} = -\frac{2}{3}, \quad
n = \frac{4}{6} = \frac{2}{3}
$$

Final Result
$$
\boxed{\left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)}
$$

Strengthen your understanding of 3D vectors with Anand Classesโ€™ comprehensive notes, perfect for CBSE and JEE preparation.


NCERT Question.14 :
Show that the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$
is equally inclined to the axes $OX$, $OY$, and $OZ$.

Solution
Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$

Magnitude of $\vec{a}$:
$$
|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}
$$

Direction cosines:
$$
\ell = \frac{1}{|\vec{a}|} = \frac{1}{\sqrt{3}}, \quad
m = \frac{1}{|\vec{a}|} = \frac{1}{\sqrt{3}}, \quad
n = \frac{1}{|\vec{a}|} = \frac{1}{\sqrt{3}}
$$

Let $\alpha$, $\beta$, and $\gamma$ be the angles formed by vector $\vec{a}$ with the positive directions of the $x$, $y$, and $z$ axes respectively.

$$
\cos \alpha = \ell = \frac{1}{\sqrt{3}}, \quad
\cos \beta = m = \frac{1}{\sqrt{3}}, \quad
\cos \gamma = n = \frac{1}{\sqrt{3}}
$$

All angles $\alpha$, $\beta$, and $\gamma$ are equal.

Hence, the vector is equally inclined to $OX$, $OY$, and $OZ$.

Final Result
$$
\boxed{\text{Vector } \vec{a} \text{ is equally inclined to the axes OX, OY, and OZ}}
$$

Enhance your grasp of direction cosines and 3D vector geometry with Anand Classesโ€™ clear and structured notes, perfect for CBSE and JEE preparation.


NCERT Question.15 : Find the position vector of a point $R$ which divides the line joining two points $P$ and $Q$ whose position vectors are
$$\vec{OP} = \hat{i} + 2\hat{j} – \hat{k} \quad \text{and} \quad \vec{OQ} = -\hat{i} + \hat{j} + \hat{k}$$
in the ratio $2:1$
(i) Internally (ii) Externally

Solution
Let the position vectors of $P$ and $Q$ be $\vec{OP}$ and $\vec{OQ}$ respectively:

$$\vec{OP} = \hat{i} + 2\hat{j} – \hat{k}, \quad \vec{OQ} = -\hat{i} + \hat{j} + \hat{k}$$

(i) Internally

Using the section formula (internal division):
$$\vec{OR} = \frac{2\vec{OQ} + 1\vec{OP}}{2+1}$$

Substitute the vectors:
$$\vec{OR} = \frac{2(-\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 2\hat{j} – \hat{k})}{3}$$

Simplify:
$$\vec{OR} = \frac{-2\hat{i} + 2\hat{j} + 2\hat{k} + \hat{i} + 2\hat{j} – \hat{k}}{3}$$

$$\vec{OR} = \frac{-\hat{i} + 4\hat{j} + \hat{k}}{3}$$

$$\vec{OR} = -\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} + \frac{1}{3}\hat{k}$$

(ii) Externally

Using the section formula (external division):
$$\vec{OR} = \frac{2\vec{OQ} – 1\vec{OP}}{2-1}$$

Substitute the vectors:
$$\vec{OR} = 2(-\hat{i} + \hat{j} + \hat{k}) – (\hat{i} + 2\hat{j} – \hat{k})$$

Simplify:
$$\vec{OR} = -2\hat{i} + 2\hat{j} + 2\hat{k} – \hat{i} – 2\hat{j} + \hat{k}$$

$$\vec{OR} = -3\hat{i} + 0\hat{j} + 3\hat{k}$$

$$\vec{OR} = -3\hat{i} + 3\hat{k}$$

Final Result

$$\boxed{
\text{(i) Internally: } \vec{OR} = -\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} + \frac{1}{3}\hat{k}, \quad
\text{(ii) Externally: } \vec{OR} = -3\hat{i} + 3\hat{k}
}$$

Enhance your understanding of vector division and position vectors with Anand Classesโ€™ concise and clear solutions, ideal for CBSE and JEE preparation.


NCERT Question.16 : Find the position vector of the mid-point of the line joining the points $(2 , 3 , 4)$ and $(4 , 1 , -2)$.

Solution:
The midpoint divides the line joining the points $(2 , 3 , 4)$ and $(4 , 1 , -2)$ internally in the ratio $1:1$.

Using the midpoint formula, the position vector of the midpoint $R$ is:

$$
\vec{OR} = \frac{1(\vec{r}_2) + 1(\vec{r}_1)}{1+1}
$$

Substitute the position vectors:

$$
\vec{OR} = \frac{(2\hat{i} + 3\hat{j} + 4\hat{k}) + (4\hat{i} + \hat{j} – 2\hat{k})}{2}
$$

Simplify:

$$
\vec{OR} = \frac{(6\hat{i} + 4\hat{j} + 2\hat{k})}{2}
$$

$$
\vec{OR} = 3\hat{i} + 2\hat{j} + \hat{k}
$$

Final Result

$$
\boxed{\vec{OR} = 3\hat{i} + 2\hat{j} + \hat{k}}
$$

Strengthen your vector analysis skills with Anand Classesโ€™ step-by-step solutions, perfect for CBSE and JEE preparation.


NCERT Question.17 : Show that the points $A$, $B$, and $C$ with position vectors
$\vec{a} = 3\hat{i} – 4\hat{j} – 4\hat{k}$,
$\vec{b} = 2\hat{i} – \hat{j} + \hat{k}$, and
$\vec{c} = \hat{i} – 3\hat{j} – 5\hat{k}$
form the vertices of a right-angled triangle.

Solution:
Position vectors of points $A$, $B$, and $C$ are given as:

$$
\vec{a} = 3\hat{i} – 4\hat{j} – 4\hat{k}, \quad
\vec{b} = 2\hat{i} – \hat{j} + \hat{k}, \quad
\vec{c} = \hat{i} – 3\hat{j} – 5\hat{k}
$$

The vectors representing the sides of the triangle are:

$$
\vec{AB} = \vec{b} – \vec{a} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}
$$

$$
\vec{BC} = \vec{c} – \vec{b} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} – 2\hat{j} – 6\hat{k}
$$

$$
\vec{CA} = \vec{a} – \vec{c} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} – \hat{j} + \hat{k}
$$

Now, calculate the squares of their magnitudes:

$$
|\vec{AB}|^2 = (-1)^2 + 3^2 + 5^2 = 1 + 9 + 25 = 35
$$

$$
|\vec{BC}|^2 = (-1)^2 + (-2)^2 + (-6)^2 = 1 + 4 + 36 = 41
$$

$$
|\vec{CA}|^2 = (2)^2 + (-1)^2 + (1)^2 = 4 + 1 + 1 = 6
$$

Check for the Pythagorean relation:

$$
|\vec{AB}|^2 + |\vec{CA}|^2 = 35 + 6 = 41 = |\vec{BC}|^2
$$

Since the sum of the squares of two sides equals the square of the third side, the triangle $ABC$ is right-angled at point $A$.

Final Result

$$
\boxed{\text{The points } A, B, C \text{ form a right-angled triangle at } A}
$$

Boost your vector problem-solving with Anand Classesโ€™ detailed solutions, ideal for JEE and CBSE preparation.


NCERT Question.18 :
In triangle $ABC$, which of the following is not true:
(A) $\vec{AB} + \vec{BC} + \vec{CA} = \vec{0}$
(B) $\vec{AB} + \vec{BC} – \vec{AC} = \vec{0}$
(C) $\vec{AB} + \vec{BC} – \vec{CA} = \vec{0}$
(D) $\vec{AB} – \vec{CB} + \vec{CA} = \vec{0}$
Ncert question. 18 : in triangle $abc$
NCERT Question.18 : In triangle $ABC$

Solution:
Using the triangle law of vector addition,

$$
\vec{AB} + \vec{BC} = \vec{AC} \implies \vec{AB} + \vec{BC} – \vec{AC} = \vec{0}
$$

Also,

$$
\vec{AB} + \vec{BC} + \vec{CA} = \vec{0}
$$

Hence:

  • Option A: $\vec{AB} + \vec{BC} + \vec{CA} = \vec{0}$ โœ… True
  • Option B: $\vec{AB} + \vec{BC} – \vec{AC} = \vec{0}$ โœ… True
  • Option D: $\vec{AB} – \vec{CB} + \vec{CA} = \vec{0}$ โœ… True

Option C states:

$$
\vec{AB} + \vec{BC} – \vec{CA} = \vec{0}
$$

This is not true, because $\vec{CA} = -\vec{AC}$, so this equation would incorrectly imply

$$
\vec{AB} + \vec{BC} + \vec{AC} = \vec{0} \quad \text{which is false.}
$$

Final Result

$$
\boxed{\text{The option which is not true is (C)}}
$$

Get thorough explanations and step-by-step solutions for all vector problems with Anand Classes, perfect for JEE and CBSE preparation.


NCERT Question.19 :
If $\vec{a}$ and $\vec{b}$ are two collinear vectors, then which of the following are incorrect?
(A) $\vec{b} = \lambda \vec{a}$, for some scalar $\lambda$
(B) $\vec{a} = \pm \vec{b}$
(C) The respective components of $\vec{a}$ and $\vec{b}$ are proportional
(D) Both the vectors $\vec{a}$ and $\vec{b}$ have the same direction, but different magnitudes

Solution:
If $\vec{a}$ and $\vec{b}$ are collinear, they are parallel. Therefore, for some scalar $\lambda$:

$$
\vec{b} = \lambda \vec{a}
$$

Hence, option A is true.

If $\lambda = \pm 1$, then

$$
\vec{a} = \pm \vec{b}
$$

Thus, option B is true.

Let

$$
\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \quad \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}
$$

Then

$$
\vec{b} = \lambda \vec{a} \implies b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k})
$$

Comparing components:

$$
b_1 = \lambda a_1, \quad b_2 = \lambda a_2, \quad b_3 = \lambda a_3
$$

Hence, the components of $\vec{a}$ and $\vec{b}$ are proportional, so option C is true.

Option D is incorrect, because collinear vectors can have same or opposite directions, and their magnitudes may or may not differ; it is not necessary that they always have the same direction with different magnitudes.

Final Result

$$
\boxed{\text{The incorrect option is (D)}}
$$

Download top-quality study material by Anand Classes for a complete understanding of vector properties, ideal for JEE and CBSE preparation.

โฌ…๏ธ NCERT Solutions Exercise 10.2 NCERT Solutions Exercise 10.1 โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS