Three Dimensional Geometry NCERT Solutions Miscellaneous Exercise Chapter-11 Class 12 Math Notes PDF Free Download

โญโญโญโญโญ (5/5 from 85209 reviews)

NCERT Question.1 : Find the angle between the lines whose direction ratios are
$(a,b,c)$ and $(b-c,c-a,a-b)$

Solution
The angle between two lines whose direction ratios are
$(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ is

$$
\cos\theta=\frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^{,2}+b_1^{,2}+c_1^{,2}}\sqrt{a_2^{,2}+b_2^{,2}+c_2^{,2}}}
$$

Given

$$a_1=a,\quad b_1=b,\quad c_1=c$$
$$a_2=b-c,\quad b_2=c-a,\quad c_2=a-b$$

Substitute in the formula:

$$
a(b-c)+b(c-a)+c(a-b)
$$

Expand:

$$
ab-ac+bc-ab+ca-bc=0
$$

Thus,

$$
\cos\theta=\frac{0}{\sqrt{a^{2}+b^{2}+c^{2}}\sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}=0
$$

Therefore,

$$
\theta=90^\circ
$$

Final Result

$$\boxed{90^\circ}$$

Strengthen your Class 12 vector algebra preparation with clear NCERT-style solutions and structured revision notes from Anand Classes, perfect for CBSE boards and competitive exams like JEE.


NCERT Question.2 : Find the equation of a line parallel to the $x$โ€“axis and passing through the origin

Solution
A line passing through a point $(x_1, y_1 , z_1)$ and having direction ratios $(a , b , c)$ is written as

$$
\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}
$$

The given line passes through the origin:

$$
x_1=0 ; y_1=0 ; z_1=0
$$

Since the line is parallel to the xโ€“axis, its direction ratios are:

$$
a=1 ; b=0 ; c=0
$$

Thus, the equation of the required line becomes:

$$
\frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0}
$$

Which simplifies to:

$$
x=\lambda \quad y=0 \quad z=0
$$

Final Result

$$
\boxed{x=\lambda ; y=0 ; z=0}
$$

Boost your understanding of 3D geometry with well-structured NCERT-style vector solutions from Anand Classes, crafted for Class 12 CBSE and perfect for JEE Main preparation.


NCERT Question.3 : If the lines
$$\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}\quad and \\[1em] \frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5}$$
are perpendicular, find the value of $k$.

Solution
Direction ratios of the first line are

$$a_1=-3 \quad b_1=2k \quad c_1=2$$

Direction ratios of the second line are

$$a_2=3k \quad b_2=1 \quad c_2=-5$$

For two lines to be perpendicular,

$$
a_1a_2+b_1b_2+c_1c_2=0
$$

Substituting the values:

$$
(-3)(3k)+(2k)(1)+(2)(-5)=0
$$

$$
-9k+2k-10=0
$$

$$
-7k-10=0
$$

$$
-7k=10
$$

$$
k=-\frac{10}{7}
$$

Final Result

$$\boxed{k=-\frac{10}{7}}$$

For more NCERT-style vector solutions and clear step-by-step explanations, explore the premium notes by Anand Classes, ideal for Class 12 CBSE and JEE aspirants aiming for accuracy and speed in problem-solving.


NCERT Question.4 : Find the shortest distance between the lines
$$\vec r=6\hat i+2\hat j+2\hat k+\lambda(\hat i-2\hat j+2\hat k) \quad and \\[1em]\vec r=-4\hat i+0\hat j-\hat k+\mu(3\hat i-2\hat j-2\hat k)$$

Solution
Write both lines in the form $\vec r=\vec a+\lambda\vec b$ and identify vectors

$$\vec a_1=6\hat i+2\hat j+2\hat k,\qquad \vec b_1=\hat i-2\hat j+2\hat k$$

$$\vec a_2=-4\hat i+0\hat j-\hat k,\qquad \vec b_2=3\hat i-2\hat j-2\hat k$$

Compute the difference of position vectors

$$\vec a_2-\vec a_1=(-4-6)\hat i+(0-2)\hat j+(-1-2)\hat k=-10\hat i-2\hat j-3\hat k$$

Compute the cross product

$$
\vec b_1\times\vec b_2=
\begin{vmatrix}
\hat i & \hat j & \hat k\\
1 & -2 & 2\\
3 & -2 & -2
\end{vmatrix}
$$

$$
\vec b_1\times\vec b_2=\hat i((-2)(-2)-2(-2))-\hat j(1(-2)-2\cdot 3)+\hat k(1(-2)-(-2)\cdot 3)
$$

$$
\vec b_1\times\vec b_2=\hat i(4+4)-\hat j(-2-6)+\hat k(-2+6)=8\hat i+8\hat j+4\hat k
$$

Magnitude of the cross product

$$\big\lVert\vec b_1\times\vec b_2\big\rVert=\sqrt{8^2+8^2+4^2}=\sqrt{64+64+16}=\sqrt{144}=12$$

Dot product of the cross with $\vec a_2-\vec a_1$

$$
(\vec b_1\times\vec b_2)\cdot(\vec a_2-\vec a_1)=(8\hat i+8\hat j+4\hat k)\cdot(-10\hat i-2\hat j-3\hat k)
$$

$$
(\vec b_1\times\vec b_2)\cdot(\vec a_2-\vec a_1)=8(-10)+8(-2)+4(-3)=-80-16-12=-108
$$

Shortest distance formula for skew lines

$$
d=\left|\frac{(\vec b_1\times\vec b_2)\cdot(\vec a_2-\vec a_1)}{\big\lVert\vec b_1\times\vec b_2\big\rVert}\right|
$$

Substitute values

$$
d=\left|\frac{-108}{12}\right|=9
$$

Final Result

$$\boxed{9\ \text{units}}$$

Clear, vector-based NCERT solutions and downloadable revision notes by Anand Classes โ€” ideal for CBSE and competitive-exam practice.


NCERT Question.5 : Find the vector equation of the line passing through $(1,2,-4)$ and perpendicular to the two lines
$$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \qquad\text{and}\\[1em] \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$$

Solution
Step 1: Direction vectors of the two given lines

From the symmetric forms:

$$\vec b_1 = 3\hat i – 16\hat j + 7\hat k$$

$$\vec b_2 = 3\hat i + 8\hat j – 5\hat k$$

Step 2: Find the direction vector of the required line

The required line is perpendicular to both lines, so its direction vector is

$$\vec b = \vec b_1 \times \vec b_2$$

Compute the cross product:

$$
\vec b =
\begin{vmatrix}
\hat i & \hat j & \hat k \\
3 & -16 & 7 \\
3 & 8 & -5
\end{vmatrix}
$$

$$
\vec b= \hat i((-16)(-5) – 7\cdot8)-\hat j(3(-5) – 7\cdot3)+\hat k(3\cdot8 – (-16)(3))
$$

$$
\vec b= \hat i(80 – 56) -\hat j(-15 – 21)+\hat k(24 + 48)
$$

$$
\vec b= 24\hat i + 36\hat j + 72\hat k
$$

Factor out (12):

$$\vec b’ = 2\hat i + 3\hat j + 6\hat k$$

Step 3: Position vector of the given point

Point $(1,2,-4)$:

$$\vec a = \hat i + 2\hat j – 4\hat k$$

Step 4: Vector equation of the required line

$$
\vec r = \vec a + \lambda \vec b’
$$

$$
\vec r = (\hat i + 2\hat j – 4\hat k) + \lambda(2\hat i + 3\hat j + 6\hat k)
$$

Final Result

$$
\boxed{\vec r =(\hat i + 2\hat j – 4\hat k) + \lambda(2\hat i + 3\hat j + 6\hat k)}
$$

Enhance your Class 12 and JEE preparation with premium vector geometry notes by Anand Classes, offering clean MathJax formatting, clear explanations, and exam-oriented solved examples.

โฌ…๏ธ NCERT Solutions Exercise 13.1 (Set-2) NCERT Solutions Exercise 11.2 (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS