Three Dimensional Geometry NCERT Solutions Exercise 11.2 Chapter-11 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 72961 reviews)

Access NCERT Solutions of Chapter -11 Three Dimensional Geometry Exercise 11.2 Class 12 Math


NCERT Question 11 : Show that the lines
$$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad and \\[1em]
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$
are perpendicular to each other.

Solution
The given symmetric equations are:
$$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$$

and
$$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}.$$

Thus, the direction ratios are
$$\vec b_1=(7,-5,1),$$
$$\vec b_2=(1,2,3).$$

To check perpendicularity, use the condition
$$a_1a_2 + b_1b_2 + c_1c_2 = 0.$$

Compute:
$$7(1) + (-5)(2) + 1(3) = 7 – 10 + 3 = 0.$$

Hence, the lines are perpendicular.

Final Result

$$\boxed{\text{The given lines are perpendicular.}}$$

For more such NCERT-based vector geometry solutions, explore the detailed study material by Anand Classes, ideal for CBSE and competitive exam preparation.


NCERT Question.12 : Find the shortest distance between the lines
$$\vec r = \hat i + 2\hat j + \hat k + \lambda(\hat i – \hat j + \hat k)\\[1em]
\vec r = 2\hat i – \hat j – \hat k + \mu(2\hat i + \hat j + 2\hat k)$$

Solution
The shortest distance between two skew lines

$$\vec r = \vec a_1 + \lambda \vec b_1 \quad \text{and} \quad \vec r = \vec a_2 + \mu \vec b_2$$

is

$$d = \frac{\left|(\vec a_2 – \vec a_1)\cdot (\vec b_1 \times \vec b_2)\right|}{|\vec b_1 \times \vec b_2|}$$

Step 1: Identify vectors

$$\vec a_1 = \hat i + 2\hat j + \hat k$$

$$\vec b_1 = \hat i – \hat j + \hat k$$

$$\vec a_2 = 2\hat i – \hat j – \hat k$$

$$\vec b_2 = 2\hat i + \hat j + 2\hat k$$

Step 2: Compute

$$\vec a_2 – \vec a_1 = (2\hat i – \hat j – \hat k) – (\hat i + 2\hat j + \hat k)$$

$$\vec a_2 – \vec a_1= \hat i – 3\hat j – 2\hat k$$

Step 3: Cross product

$$
\vec b_1 \times \vec b_2=
\begin{vmatrix}
\hat i & \hat j & \hat k \\
1 & -1 & 1 \\
2 & 1 & 2
\end{vmatrix}
$$

Computing the determinant:

$$
\vec b_1 \times \vec b_2
= (-2 – 1)\hat i – (2 – 2)\hat j + (1 + 3)\hat k
$$

$$
\vec b_1 \times \vec b_2= -3\hat i + 0\hat j + 4\hat k
$$

Magnitude:

$$
|\vec b_1 \times \vec b_2| = \sqrt{(-3)^2 + 0^2 + 4^2}
= \sqrt{9 + 16}
= \sqrt{25}
= 5
$$

Step 4: Dot product

$$
(\vec a_2 – \vec a_1)\cdot (\vec b_1 \times \vec b_2)
= (\hat i – 3\hat j – 2\hat k)\cdot(-3\hat i + 4\hat k)
$$

$$
(\vec a_2 – \vec a_1)\cdot (\vec b_1 \times \vec b_2)= -3(1) + 4(-2)
$$

$$
(\vec a_2 – \vec a_1)\cdot (\vec b_1 \times \vec b_2)= -3 – 8 = -11
$$

Step 5: Distance

$$d = \frac{\left|(\vec a_2 – \vec a_1)\cdot (\vec b_1 \times \vec b_2)\right|}{|\vec b_1 \times \vec b_2|}$$

$$
d = \frac{| -11 |}{5}
= \frac{11}{5}
$$

Final Answer

$$\boxed{\frac{11}{5}}$$

Top-quality vector algebra notes and step-by-step NCERT solutions are available from Anand Classes, perfect for Class 12 Boards and competitive exams.


NCERT Question.13 : Find the shortest distance between the lines
$$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \quad \text{and} \quad \\[1em] \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$$

Solution
For two lines in symmetric form

$$\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1}$$

and

$$\frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}$$

the shortest distance is

$$
d=\frac{
\left|
\begin{vmatrix}
x_2-x_1 & y_2-y_1 & z_2-z_1 \\
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2
\end{vmatrix}
\right|
}{
\sqrt{(b_1c_2 – b_2c_1)^2 + (c_1a_2 – c_2a_1)^2 + (a_1b_2 – a_2b_1)^2}
}
$$

Step 1: Identify parameters

From the first line:
$$x_1=-1, y_1=-1, z_1=-1$$

$$a_1=7, b_1=-6, c_1=1$$

From the second line:
$$x_2=3, y_2=5, z_2=7$$

$$a_2=1, b_2=-2, c_2=1$$

Step 2: Evaluate determinant

$$
\begin{vmatrix}
4 & 6 & 8 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{vmatrix}
=4(-6+2)-6(7-1)+8(-14+6)
$$

$$
=-16 – 36 – 64 = -116
$$

Step 3: Denominator

$$
(b_1c_2 – b_2c_1)^2 + (c_1a_2 – c_2a_1)^2 + (a_1b_2 – a_2b_1)^2
$$

Substitute:

$$
(-6\cdot 1 – (-2)\cdot 1)^2 + (1\cdot 1 – 1\cdot 7)^2 + (7(-2) – 1(-6))^2
$$

$$
=(-6+2)^2 + (1-7)^2 + (-14+6)^2
$$

$$
=16 + 36 + 64 = 116
$$

Thus denominator:

$$\sqrt{116} = 2\sqrt{29}$$

Step 4: Distance

$$
d=\frac{
\left|
\begin{vmatrix}
x_2-x_1 & y_2-y_1 & z_2-z_1 \\
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2
\end{vmatrix}
\right|
}{
\sqrt{(b_1c_2 – b_2c_1)^2 + (c_1a_2 – c_2a_1)^2 + (a_1b_2 – a_2b_1)^2}
}
$$

$$
d=\frac{| -116 |}{2\sqrt{29}}=\frac{116}{2\sqrt{29}}=\frac{58}{\sqrt{29}}
$$

Rationalizing:

$$
d=\frac{58}{\sqrt{29}}\cdot \frac{\sqrt{29}}{\sqrt{29}}=\frac{58\sqrt{29}}{29}=2\sqrt{29}
$$

Final Answer

$$\boxed{2\sqrt{29}}$$

For more detailed NCERT Class 11 & 12 coordinate geometry explanations and solved examples, explore high-quality study materials and notes from Anand Classesโ€”perfect for CBSE and competitive exam preparation.


NCERT Question.14 : Find the shortest distance between the lines
$$\vec r=\hat i+2\hat j+3\hat k+\lambda(\hat i-3\hat j+2\hat k) \\[1em]\vec r=4\hat i+5\hat j+6\hat k+\mu(2\hat i+3\hat j+\hat k)$$

Solution :
Position vectors

$$\vec a_1=(1,2,3),\qquad \vec a_2=(4,5,6)$$

Direction vectors

$$\vec b_1=(1,-3,2),\qquad \vec b_2=(2,3,1)$$

Formula (vector method)

For skew lines $\vec r=\vec a_1+\lambda\vec b_1$ and $\vec r=\vec a_2+\mu\vec b_2$ the shortest distance is

$$
d=\frac{\left|(\vec a_2-\vec a_1)\cdot(\vec b_1\times\vec b_2)\right|}{\big|\vec b_1\times\vec b_2\big|}
$$

1. Difference of position vectors

$$\vec a_2-\vec a_1=(4-1,5-2,6-3)=(3,3,3)$$

2. Cross product

$$
\vec b_1\times\vec b_2=
\begin{vmatrix}
\hat i & \hat j & \hat k\\
1 & -3 & 2\\
2 & 3 & 1
\end{vmatrix}
= -9\hat i +3\hat j +9\hat k
$$

3. Magnitude of cross product

$$
\big|\vec b_1\times\vec b_2\big|=\sqrt{(-9)^2+3^2+9^2}
=\sqrt{81+9+81}
=\sqrt{171}
=3\sqrt{19}
$$

4. Dot product

$$
(\vec a_2-\vec a_1)\cdot(\vec b_1\times\vec b_2)
=(3\hat i+3\hat j+3\hat k)\cdot(-9\hat i+3\hat j+9\hat k)$$

$$(\vec a_2-\vec a_1)\cdot(\vec b_1\times\vec b_2) =3(-9+3+9)=9
$$

Distance

Substitute into the formula:

$$
d=\frac{|9|}{3\sqrt{19}}=\frac{3}{\sqrt{19}}
$$

Final Result

$$\boxed{\frac{3}{\sqrt{19}}}$$

Comprehensive vector solutions and downloadable coordinate-geometry notes by Anand Classes โ€” ideal for board exam revision and competitive exam practice.


NCERT Question.15 : Find the shortest distance between the lines
$$\vec r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k \quad and \\[1em] \vec r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k$$

Solution :
Step 1 โ€” Write both lines in standard vector form

Rewrite the first line as $\vec r=\vec a_1+t\vec b_1$ (note the parameter sign change):

$$\vec r=(\hat i-2\hat j+3\hat k)+t(-\hat i+\hat j-2\hat k)$$

so
$$\vec a_1=(1,-2,3),\qquad \vec b_1=(-1,1,-2).$$

Rewrite the second line as $\vec r=\vec a_2+s\vec b_2$:

$$\vec r=(\hat i-\hat j-\hat k)+s(\hat i+2\hat j-2\hat k)$$

so
$$\vec a_2=(1,-1,-1),\qquad \vec b_2=(1,2,-2).$$

Step 2 โ€” Vector formula for shortest distance

For skew lines $\vec r=\vec a_1+\lambda\vec b_1$ and $\vec r=\vec a_2+\mu\vec b_2$ the shortest distance is

$$
d=\frac{\big|(\vec a_2-\vec a_1)\cdot(\vec b_1\times\vec b_2)\big|}{\lVert \vec b_1\times\vec b_2\rVert}
$$

Step 3 โ€” Compute the pieces

Difference of position vectors:

$$\vec a_2-\vec a_1=(1-1, -1-(-2), -1-3)=(0,1,-4).$$

Cross product:

$$
\vec b_1\times\vec b_2=
\begin{vmatrix}
\hat i & \hat j & \hat k\\
-1 & 1 & -2\\
1 & 2 & -2
\end{vmatrix}
=(2,-4,-3).
$$

Magnitude of the cross product:

$$
\lVert \vec b_1\times\vec b_2\rVert=\sqrt{2^2+(-4)^2+(-3)^2}=\sqrt{4+16+9}=\sqrt{29}.
$$

Dot product:

$$
(\vec a_2-\vec a_1)\cdot(\vec b_1\times\vec b_2)=(0,1,-4)\cdot(2,-4,-3)=0-4+12=8.
$$

Step 4 โ€” Distance

Substitute into the formula:

$$
d=\frac{|8|}{\sqrt{29}}=\frac{8}{\sqrt{29}}.
$$

Final Result

$$\boxed{\frac{8}{\sqrt{29}}}$$

Clear, vector-based NCERT solutions and downloadable revision notes from Anand Classes โ€” perfect for Class 12 boards and competitive-exam practice.


NCERT Question 16 : Find the vector and Cartesian equation of the line passing through the origin and the point (5, -2, 3)

Solution
The line passes through the origin, so its position vector is
$$\vec{a} = \vec{0}$$

The direction ratios of the line through the origin $(0, 0, 0)$ and the point $(5, -2, 3)$ are
$$(5-0, -2-0, 3-0) = (5, -2, 3)$$

Hence, the line is parallel to the vector
$$\vec{b} = 5\hat{i} – 2\hat{j} + 3\hat{k}$$

The vector equation of a line passing through a point with position vector $\vec{a}$ and parallel to vector $\vec{b}$ is
$$\vec{r} = \vec{a} + \lambda \vec{b}, ;\lambda \in \mathbb{R}$$

Substituting the values, we get
$$\vec{r} = \vec{0} + \lambda (5\hat{i} – 2\hat{j} + 3\hat{k})$$

$$\vec{r} = \lambda (5\hat{i} – 2\hat{j} + 3\hat{k})$$

The Cartesian form of a line passing through point $(x_1, y_1, z_1)$ with direction ratios $(a, b, c)$ is
$$\frac{x – x_1}{a} = \frac{y – y_1}{b} = \frac{z – z_1}{c}$$

For this line, we have $(x_1, y_1, z_1) = (0, 0, 0)$ and $(a, b, c) = (5, -2, 3)$, so the Cartesian equation is
$$\frac{x – 0}{5} = \frac{y – 0}{-2} = \frac{z – 0}{3}$$

$$\frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

Final Result

Vector form:
$$\boxed{\vec{r} = \lambda (5\hat{i} – 2\hat{j} + 3\hat{k}), ;\lambda \in \mathbb{R}}$$

Cartesian form:
$$\boxed{\frac{x}{5} = \frac{y}{-2} = \frac{z}{3}}$$

Perfect study solution for NCERT 3D geometry exercises, ideal for JEE and CBSE preparation.

โฌ…๏ธ NCERT Solutions Miscellaneous Exercise NCERT Solutions Exercise 11.2 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS