NCERT Solutions Limits And Derivatives Miscellaneous Exercise Class 11 Math (Set-2)

โญโญโญโญโญ (5/5 from 45892 reviews)

NCERT Question 11 : Find the derivative of
$$f(x) = 4\sqrt{x} – 2$$

Solution :

Rewrite $\sqrt{x}$ using exponent form:
$$f(x) = 4x^{\frac{1}{2}} – 2$$

Differentiate both sides:

$$f'(x) = \frac{d}{dx}\left(4x^{\frac{1}{2}}\right) – \frac{d}{dx}(2)$$

Using $\frac{d}{dx}(x^n) = nx^{n-1}$ and derivative of constant is $0$:

$$f'(x) = 4 \cdot \frac{1}{2} x^{\frac{1}{2}-1} – 0$$

$$f'(x) = 2x^{-\frac{1}{2}}$$

Rewrite using radicals:

$$f'(x) = \frac{2}{\sqrt{x}}$$

Final Answer

$$\boxed{f'(x) = \frac{2}{\sqrt{x}}}$$


NCERT Question 12 : Find the derivative of
$$f(x) = (ax + b)^n$$
using first principle.

Solution :
Let
$$f(x) = (ax + b)^n$$

Then,
$$f(x+h) = (a(x+h) + b)^n = (ax + ah + b)^n$$

Using the first principle of differentiation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$

Substitute values:

$$f'(x) = \lim_{h \to 0} \frac{(ax + ah + b)^n – (ax + b)^n}{h}$$

Factor out $(ax+b)^n$:

$$f'(x) = (ax+b)^n \lim_{h \to 0} \frac{\left(1 + \frac{ah}{ax+b}\right)^n – 1}{h}$$

Using the Binomial Expansion:

$$\left(1 + \frac{ah}{ax+b}\right)^n = 1 + n\frac{ah}{ax+b} + \frac{n(n-1)}{2!}\left(\frac{ah}{ax+b}\right)^2 + \cdots$$

Substitute:

$$f'(x) = (ax+b)^n \lim_{h \to 0} \frac{n\frac{ah}{ax+b} + \frac{n(n-1)}{2!}\left(\frac{ah}{ax+b}\right)^2 + \cdots}{h}$$

Factor $h$ out:

$$f'(x) = (ax+b)^n \lim_{h \to 0} \left[ n\frac{a}{ax+b} + \frac{n(n-1)a^2h}{2!(ax+b)^2} + \cdots \right]$$

As $h \to 0$, all higher terms vanish:

$$f'(x) = (ax+b)^n \left( n\frac{a}{ax+b} \right)$$

Simplifying:

$$f'(x) = na(ax+b)^{n-1}$$

Final Answer

$$\boxed{f'(x) = na(ax + b)^{,n-1}}$$


NCERT Question 13 : Find the derivative of
$$f(x)=(ax+b)^n (cx+d)^m$$
using first principle.

Solution :
Let
$$f(x) = (ax+b)^n (cx+d)^m$$

By first principle:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$

Now,
$$f(x+h) = (a(x+h)+b)^n (c(x+h)+d)^m $$

$$f(x+h) = (ax+ah+b)^n (cx+ch+d)^m$$

So,
$$f(x+h)-f(x) = (ax+ah+b)^n (cx+ch+d)^m – (ax+b)^n (cx+d)^m$$

Add and subtract $(ax+ah+b)^n (cx+d)^m$ in above equation
inside:

$f(x+h)-f(x) = (ax+ah+b)^n (cx+d)^m – (ax+b)^n (cx+d)^m + (ax+ah+b)^n (cx+ch+d)^m – (ax+ah+b)^n (cx+d)^m$

Divide by (h):

$$
\frac{f(x+h)-f(x)}{h} =
\frac{(ax+ah+b)^n – (ax+b)^n}{h}(cx+d)^m +\\
(ax+ah+b)^n \frac{(cx+ch+d)^m – (cx+d)^m}{h}
$$

Take the limit $(h \to 0):$

  • Binomial expansion gives
    $$\lim_{h\to0}\frac{(ax+ah+b)^n – (ax+b)^n}{h} = na(ax+b)^{n-1}$$
  • And similarly
    $$\lim_{h\to0}\frac{(cx+ch+d)^m – (cx+d)^m}{h} = mc(cx+d)^{m-1}$$

Substitute the limits:

$$f'(x) = na(ax+b)^{n-1}(cx+d)^m + mc(ax+b)^n(cx+d)^{m-1}$$

โœ… Final Answer

$$
\boxed{
f'(x) = na(ax+b)^{n-1}(cx+d)^m + mc(ax+b)^n(cx+d)^{m-1}
}
$$


NCERT Question 14 : Find the derivative of $\sin(x+a)$ using first principle

Solution:
Let
$$f(x) = \sin(x+a)$$

Then
$$f(x+h) = \sin((x+h) + a) = \sin(x + a + h)$$

Using first principle:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$

Substituting the values:
$$f'(x) = \lim_{h \to 0} \frac{\sin(x+a+h) – \sin(x+a)}{h}$$

Using identity:
$$\sin A – \sin B = 2 \cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Let
$(A = x+a+h)$ and $(B = x+a)$

So:
$$
\sin(x+a+h) – \sin(x+a)
= 2 \cos\left(\frac{2(x+a)+h}{2}\right)\sin\left(\frac{h}{2}\right)
$$

Substitute into limit:
$$
f'(x) = \lim_{h \to 0}
\frac{2 \cos\left(x+a+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}
$$

Rewrite:
$$
f'(x) = \lim_{h \to 0}
\left[2 \cos\left(x+a+\frac{h}{2}\right)\cdot
\frac{\sin\left(\frac{h}{2}\right)}{h}\right]
$$

Multiply and divide by 2:
$$
f'(x) =
\lim_{h \to 0}
\left[
\cos\left(x+a+\frac{h}{2}\right)
\cdot
\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}
\right]
$$

Now using the limit identity
$$\lim_{t\to0} \frac{\sin t}{t} = 1$$

As $(h \to 0),$
$$\cos\left(x+a+\frac{h}{2}\right) \to \cos(x+a)$$

Thus,

$$
\boxed{f'(x) = \cos(x+a)}
$$


NCERT Question 15: Find the derivative of $\csc x \cot x$

Solution:
Let
$$f(x) = \csc x \cot x$$

Taking derivative both sides,

$$\frac{d}{dx}(f(x)) = \frac{d}{dx}(\csc x \cot x)$$

Using the product rule:
$$(uv)’ = uv’ + u’v$$

So,
$$f'(x) = \cot x \cdot \frac{d}{dx}(\csc x) + (\csc x)\cdot \frac{d}{dx}(\cot x)$$

Now using standard derivatives:
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Therefore,
$$f'(x) = \cot x (-\csc x \cot x) + (\csc x)(-\csc^2 x)$$

$$f'(x) = -\cot^2 x \csc x – \csc^3 x$$


NCERT Question 16: Find the derivative of $$\frac{\cos x}{1+\sin x}$$

Solution:
Let
$$f(x) = \frac{\cos x}{1 + \sin x}$$

Taking derivative both sides:

$$\frac{d}{dx}(f(x)) = \frac{d}{dx}\left(\frac{\cos x}{1+\sin x}\right)$$

Using the quotient rule:
$$(\frac{u}{v})’ = \frac{v u’ – u v’}{v^2}$$

So,
$$f'(x) = \frac{(1+\sin x)\frac{d}{dx}(\cos x) – (\cos x)\frac{d}{dx}(1+\sin x)}{(1+\sin x)^2}$$

$$f'(x) = \frac{(1+\sin x)(-\sin x) – (\cos x)(\cos x)}{(1+\sin x)^2}$$

$$f'(x) = \frac{-\sin x – \sin^2 x – \cos^2 x}{(1+\sin x)^2}$$

Using identity:
$$\sin^2 x + \cos^2 x = 1$$

$$f'(x) = \frac{-\sin x – 1}{(1+\sin x)^2}$$

$$f'(x) = -\frac{(\sin x + 1)}{(1+\sin x)^2}$$

Cancel common term:

$$f'(x) = -\frac{1}{1 + \sin x}$$


NCERT Question 17: Find the derivative of $$f(x) = \frac{\sin x + \cos x}{\sin x – \cos x}$$

Solution:
Let

$$f(x) = \frac{\sin x + \cos x}{\sin x – \cos x}$$

Taking derivative both sides:

$$f'(x) = \frac{d}{dx}\left(\frac{\sin x + \cos x}{\sin x – \cos x}\right)$$

Using quotient rule:

$$\left(\frac{u}{v}\right)’ = \frac{v u’ – u v’}{v^2}$$

Here,
$(u = \sin x + \cos x)$ and $(v = \sin x – \cos x)$

So:

$$u’ = \cos x – \sin x$$
$$v’ = \cos x + \sin x$$

Substitute:

$$f'(x) = \frac{(\sin x – \cos x)(\cos x – \sin x) – (\sin x + \cos x)(\cos x + \sin x)}{(\sin x – \cos x)^2}$$

Expand:

$$f'(x) = \frac{-(\sin x – \cos x)^2 – (\sin x + \cos x)^2}{(\sin x – \cos x)^2}$$

Use identities:

$$(\sin x – \cos x)^2 = \sin^2 x – 2\sin x\cos x + \cos^2 x = 1 – 2\sin x\cos x$$
$$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x\cos x + \cos^2 x = 1 + 2\sin x\cos x$$

So:

$$f'(x) = \frac{-(1 – 2\sin x\cos x) – (1 + 2\sin x\cos x)}{(\sin x – \cos x)^2}$$

$$f'(x) = \frac{-1 + 2\sin x\cos x -1 – 2\sin x\cos x}{(\sin x – \cos x)^2}$$

$$f'(x) = \frac{-2}{(\sin x – \cos x)^2}$$

Final Answer:

$$\boxed{f'(x) = -\frac{2}{(\sin x – \cos x)^2}}$$


NCERT Question 18 Find the derivative of
$$f(x)=\dfrac{\sec x – 1}{\sec x + 1}$$

Solution :
Given,
$$f(x)=\dfrac{\sec x – 1}{\sec x + 1}$$

Rewrite using $\sec x = \frac{1}{\cos x}$:

$$f(x)=\dfrac{\dfrac{1}{\cos x}-1}{\dfrac{1}{\cos x}+1}
=\dfrac{\dfrac{1-\cos x}{\cos x}}{\dfrac{1+\cos x}{\cos x}}
=\dfrac{1-\cos x}{1+\cos x}$$

Now differentiate:

$$f'(x)=\frac{d}{dx}\left(\frac{1-\cos x}{1+\cos x}\right)$$

Let
$u = 1 – \cos x \Rightarrow u’ = \sin x$
$v = 1 + \cos x \Rightarrow v’ = -\sin x$

Using quotient rule:
$$f'(x)=\frac{u’v – uv’}{v^2}$$

Substitute values:

$$f'(x)=\frac{\sin x(1+\cos x)-(1-\cos x)(-\sin x)}{(1+\cos x)^2}$$

Simplify numerator:

$$f'(x) =\frac{\sin x + \sin x\cos x + \sin x – \sin x\cos x}{(1+\cos x)^2}$$
$$f'(x) =\frac{2\sin x}{(1+\cos x)^2}$$

โœ… Final Answer

$$\boxed{f'(x)=\frac{2\sin x}{(1+\cos x)^2}}$$


NCERT Question 19 Find the derivative of
$$f(x)=\sin^n x$$

Solution :
For integer $n\ge1$ consider
$$f(x)=\sin^n x=(\sin x)^n.$$

Using the chain rule (or by induction/product-rule as you started), differentiate:
$$
\frac{d}{dx}\big(\sin^n x\big)
= n(\sin x)^{,n-1}\cdot\frac{d}{dx}(\sin x)
= n\sin^{,n-1}x\cos x.
$$

Check small $n$:
$$n=1:\quad \frac{d}{dx}(\sin x)=\cos x.$$
$$n=2:\quad \frac{d}{dx}(\sin^2 x)=2\sin x\cos x.$$
$$n=3:\quad \frac{d}{dx}(\sin^3 x)=3\sin^2 x\cos x.$$

Thus for integer $n$,
$$\boxed{\dfrac{d}{dx}\big(\sin^n x\big)=n\sin^{,n-1}x\cos x.}$$

Practice more power-chain rule examples with concise notes from Anand Classes โ€” ideal for JEE & CBSE prep.

โฌ…๏ธ NCERT Solutions Exercise 1.1 Miscellaneous Exercise NCERT Solutions โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS