Matrices Exercise 3.2 NCERT Solutions Class 12 Math Chapter 3 free PDF Download

Matrices are a fundamental concept in linear algebra, used extensively in mathematics, physics, engineering, computer science, and various other fields. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. The numbers or elements inside a matrix are enclosed within square brackets and can be used to represent systems of linear equations, transformations, and many real-world data structures. Operations such as addition, subtraction, multiplication, and finding determinants and inverses of matrices help solve complex mathematical problems efficiently.

Class 12 NCERT Solutions- Mathematics- Exercise 3.2

Question 1. Let [Tex]A =\begin{bmatrix}3 & 4 \\3 & 2 \\\end{bmatrix},B=\begin{bmatrix}1 & 3 \\-2 & 5 \\\end{bmatrix}, C=\begin{bmatrix}-2 & 5 \\3 & 4 \\\end{bmatrix}   [/Tex] 

Find each of the following:

(i) A + B 

(ii) A – B

(iii) 3A – C 

(iv) AB 

(v) BA

Solution:

(i) [Tex]A+B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]+\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\ =\left[\begin{array}{ll} 2+1 & 4+3 \\ 3-2 & 2+5 \end{array}\right] \\ =\left[\begin{array}{ll} 3 & 7 \\ 1 & 7 \end{array}\right][/Tex]

(ii) [Tex]A-B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right] \\ =\left[\begin{array}{cc} 2-1 & 4-3 \\ 3 & -(-2) & 2-5 \end{array}\right] \\ =\left[\begin{array}{cc} 1 & 1 \\ 5 & -3 \end{array}\right] [/Tex]

(iii) [Tex]3 A-C=3\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{ll} 3 \times 2 & 3 \times 4 \\ 3 \times 3 & 3 \times 2 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{lc} 6 & 12 \\ 9 & 6 \end{array}\right]-\left[\begin{array}{cc} -2 & 5 \\ 3 & 4 \end{array}\right] \\ =\left[\begin{array}{ll} 6+2 & 12-5 \\ 9  -3 & 6-4 \end{array}\right] \\ =\left[\begin{array}{ll} 8 & 7 \\ 6 & 2 \end{array}\right] [/Tex]

(iv) [Tex]A B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]\\ =\left[\begin{array}{ll} 2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5) \end{array}\right]\\ =\left[\begin{array}{ll} 2-8 & 6+20 \\ 3-4 & 9+10 \end{array}\right]\\ =\left[\begin{array}{ll} -6 & 26 \\ -1 & 19 \end{array}\right] [/Tex]

(v) [Tex]BA =\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]\left[\begin{array}{cc} 2 & 4 \\ 3 & 2 \end{array}\right] \\ =\left[\begin{array}{cc} 1(2)+3(3) & 1(4)+3(2) \\ -2(2)+5(3) & -2(4)+5(2) \end{array}\right] \\ =\left[\begin{array}{rr} 2+9 & 4+6 \\ -4+15 & -8+10 \end{array}\right] \\ =\left[\begin{array}{cc} 11 & 10 \\ 11 & 2 \end{array}\right] [/Tex]

Question 2. Compute the following: 

[Tex](i)\begin{bmatrix}a & b \\-b & a \\\end{bmatrix}+\begin{bmatrix}a & b \\b & a \\\end{bmatrix}\\ (i)\begin{bmatrix}a^{2}+b^{2} & b^{2}+c^{2}\\a^{2}+c^{2} & a^{2}+b^{2} \\\end{bmatrix}+\begin{bmatrix}2ab & 2bc \\-2ac & -2ab\\\end{bmatrix}\\ (i)\begin{bmatrix}-1 & 4 & -6\\8 & 5 & 16\\2 & 8 & 5\end{bmatrix}+\begin{bmatrix}12 & 7 & 6\\8 & 0 & 5\\3 & 2 & 4\end{bmatrix}\\ (i)\begin{bmatrix}cos^{2} & sin^{2} \\sin^{2} & cos^{2} \\\end{bmatrix}+\begin{bmatrix}sin^{2} & cos^{2} \\cos^{2} & sin^{2} \\\end{bmatrix}\\[/Tex]

Solution:

(i) [Tex]{\left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]+\left[\begin{array}{cc} a & b \\ b & a \end{array}\right]} \\ =\left[\begin{array}{cc} a+a & b+b \\ -b+b & a+a \end{array}\right] \\ =\left[\begin{array}{cc} 2 a & 2 b \\ 0 & 2 a \end{array}\right] [/Tex]

(ii) [Tex]{\left[\begin{array}{l} a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2} \end{array}\right]+\left[\begin{array}{cc} 2 a b & 2 b c \\ -2 a c & -2 a b \end{array}\right]} \\ =\left[\begin{array}{ll} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\ a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{array}\right] \\ =\left[\begin{array}{c} (a+b)^{2}&(b+c)^{2} \\ (a-c)^{2} & (a-b)^{2} \end{array}\right] [/Tex]

(iii) [Tex]{\left[\begin{array}{ccc} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{array}\right]+\left[\begin{array}{ccc} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{array}\right]} \\ =\left[\begin{array}{ccc} -1+12 & 4+7 & -6+6 \\ 8+8 & 5+0 & 16+5 \\ 2+3 & 8+2 & 5+4 \end{array}\right] \\ =\left[\begin{array}{ccc} 11 & 11 & 0 \\ 16 & 5 & 21 \\ 5 & 10 & 9 \end{array}\right] [/Tex]

(iv) [Tex]{\left[\begin{array}{ll} \cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x \end{array}\right]+\left[\begin{array}{ll} \sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x \end{array}\right]} \\ =\left[\begin{array}{cc} \cos ^{2} x+\sin ^{2} x & \cos ^{2} x+\sin ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x \end{array}\right] \\ =\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right][/Tex]

Question 3. Compute the indicated products.

[Tex](i)\begin{bmatrix}a & b \\-b & a \\\end{bmatrix}\begin{bmatrix}a & -b \\b & a \\\end{bmatrix}\\ (ii)\begin{bmatrix}1 \\2\\3\end{bmatrix}\begin{bmatrix}2&3&4\\\end{bmatrix}\\ (iii)\begin{bmatrix}1 & -2 \\2 & 3 \\\end{bmatrix}\begin{bmatrix}1 & 2 & 3\\2 & 3 & 1\\\end{bmatrix}\\ (iv)\begin{bmatrix}2 & 3 & 4\\3 & 4 & 5\\4 & 5 & 6\end{bmatrix}\begin{bmatrix}1 & -3 & 5\\0 & 2 & 4\\3 & 0 & 5\end{bmatrix}\\ (v)\begin{bmatrix}2 & 1 \\3 & 2 \\-1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 1\\-1 & 2 & 1\\\end{bmatrix}\\ (vi)\begin{bmatrix}3 & -1 & 3\\-1 & 0 & 2\\\end{bmatrix}\begin{bmatrix}2 & -3 \\1 & 0 \\3 & 1 \end{bmatrix}\\[/Tex]

Solution:

(i) [Tex]{\left[\begin{array}{cc} a & b \\ -b & a \end{array}\right]\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]} \\ =\left[\begin{array}{cc} a(a)+b(b) & a(-b)+b(a) \\ -b(a)+a(b) & -b(-b)+a(a) \end{array}\right] \\ =\left[\begin{array}{cc} a^{2}+b^{2} & -a b+a b \\ -a b+a b & b^{2}+a^{2} \end{array}\right] \\ =\left[\begin{array}{cc} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{array}\right] [/Tex]

(ii) [Tex]{\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right]\left[\begin{array}{lll} 2 & 3 & 4 \end{array}\right]} \\ =\left[\begin{array}{lll} 1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4) \end{array}\right] \\ =\left[\begin{array}{lll} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{array}\right] [/Tex]

(iii) [Tex]{\left[\begin{array}{cc} 1 & -2 \\ 2 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right]} \\ =\left[\begin{array}{llll} 1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\ 2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1) \end{array}\right] \\ =\left[\begin{array}{lll} 1-4 & 2-6 & 3-2 \\ 2+6 & 4+9 & 6+3 \end{array}\right] \\ =\left[\begin{array}{ccc} -3 & -4 & 1 \\ 8 & 13 & 9 \end{array}\right] [/Tex]

(iv) [Tex]\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{array}\right]\left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{array}\right] \\ =\left[\begin{array}{l} 2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\ 3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\ 4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5) \end{array}\right] \\ =\left[\begin{array}{lll} 2+0+12 & -6+6+0 & 10+12+20 \\ 3+0+15 & -9+8+0 & 15+16+25 \\ 4+0+18 & -12+10+0 & 20+20+30 \end{array}\right] \\ =\left[\begin{array}{lll} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{array}\right] [/Tex]

(v) [Tex]\left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 1 \\ -1 & 2 & 1 \end{array}\right] \\ =\left[\begin{array}{cccc} 2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\ -1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1) \end{array}\right] \\ =\left[\begin{array}{ccc} 2-1 & 0+2 & 2+1 \\ 3-2 & 0+4 & 3+2 \\ -1-1 & 0+2 & -1+1 \end{array}\right] \\ =\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0 \end{array}\right] [/Tex]

(vi) [Tex]{\left[\begin{array}{ccc} 3 & -1 & 3 \\ -1 & 0 & 2 \end{array}\right]\left[\begin{array}{cc} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{array}\right]} \\ =\left[\begin{array}{cc} 3(2)-1(1)+3(3) & 3(-3)-1(0)+3(1) \\ -1(2)+0(1)+2(3) & -1(-3)+0(0)+2(1) \end{array}\right] \\ =\left[\begin{array}{cc} 6-1+9 & -9-0+3 \\ -2+0+6 & 3+0+2 \end{array}\right] \\ =\left[\begin{array}{cc} 14 & -6 \\ 4 & 5 \end{array}\right] [/Tex]

Question 4. If [Tex]A=\begin{bmatrix}1 & 2 & -3\\5 & 0 & 2\\1 & -1 & 1\end{bmatrix}, B=\begin{bmatrix}3 & -1 & 2\\4 & 2 & 5\\2 & 0 & 3\end{bmatrix}and\: C=\begin{bmatrix}4 & 1 & 2\\0 & 3 & 2\\1 & -2 & 3\end{bmatrix}  [/Tex], then compute (A + B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.

Solution:

[Tex]\begin{array}{l} A+B=\left[\begin{array}{ccc} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right]+\left[\begin{array}{ccc} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{array}\right] \\ {\left[\begin{array}{ccc} 1+3 & 2-1 & -3+2 \\ 5+4 & 0+2 & 2+5 \\ 1+2 & -1+0 & 1+3 \end{array}\right]=\left[\begin{array}{cccc} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{array}\right]} & \\ B-C=\left[\begin{array}{ccc} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{array}\right]-\left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{array}\right]=\left[\begin{array}{ccc} 3-4 & -1-1 & 2-2 \\ 4-0 & 2-3 & 5-2 \\ 2-1 & 0+2 & 3-3 \end{array}\right]=\left[\begin{array}{ccc} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{array}\right] \end{array}[/Tex]

Now we have to show A + (B – C) = (A + B) – C

[Tex]\Rightarrow\left[\begin{array}{ccc} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right]+\left[\begin{array}{ccc} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{array}\right]=\left[\begin{array}{ccc} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{array}\right]-\left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ccc} 1-1 & 2-2 & -3+0 \\ 5+4 & 0-1 & 2+3 \\ 1+1 & -1+2 & 1+0 \end{array}\right]=\left[\begin{array}{ccc} 4-4 & 1-1 & -1-2 \\ 9-0 & 2-3 & 7-2 \\ 3-1 & -1+2 & 4-3 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{array}\right][/Tex]

 L.H.S = R.H.S.

Hence, Proved 

Question 5. If[Tex] A=\begin{bmatrix}2/3 & 1 & 5/3\\1/3 & 2/3 & 4/3\\7/3 & 2 & 2/3\end{bmatrix}and \ B=\begin{bmatrix}2/5 & 3/5 & 1\\1/5 & 2/5 & 4/5\\7/5 & 6/5 & 2/5\end{bmatrix}  [/Tex], then compute 3A – 5B.

Solution:

[Tex]\begin{array}{l} 3 A -5 B =3\left[\begin{array}{ccc} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{array}\right]-5\left[\begin{array}{ccc} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{array}\right] \\ =\left[\begin{array}{rrr} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{array}\right]-\left[\begin{array}{ccc}\\ 2 -2 & 3-3 & 5 -5 \\ 1 -1 & 2-2 & 4  -4 \\ 7  -7 & 6-6 & 2  -2 \end{array}\right]=\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \end{array}[/Tex]

Question 6.  Simplify [Tex]cosθ\begin{bmatrix}cosθ & sinθ \\-sinθ & cosθ \\\end{bmatrix}+sinθ\begin{bmatrix}sinθ& -cosθ\\cosθ & sinθ\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{aligned} &\cos \theta\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]+\sin \theta\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right]\\ &=\left[\begin{array}{cc} \cos ^{2} \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos ^{2} \theta \end{array}\right]+\left[\begin{array}{cc} \sin ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta \end{array}\right]\\ &=\left[\begin{array}{cc} \cos ^{2} \theta+\sin ^{2} \theta & \sin \theta \cos \theta-\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta \end{array}\right]\\ &=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1 \mid\right.\\ \end{aligned}[/Tex]

= 1 = identity matrix 

Question 7. Find X and Y if

(i) [Tex]X + Y =\begin{bmatrix}7 & 0 \\2 & 5 \\\end{bmatrix}\:and\:X-Y=\begin{bmatrix}3 & 0 \\0 & 3 \\\end{bmatrix}\\ [/Tex]

(ii) [Tex]2X+3Y=\begin{bmatrix}2 & 3\\4 & 0 \\\end{bmatrix}\:and\:3X+2Y=\begin{bmatrix}2 & -2 \\-1 & 5 \\\end{bmatrix}[/Tex]

Solution:

(i) Given: [Tex]X+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right] \ \ \ -(1)[/Tex]

[Tex]X-Y=\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right] \ \ \ -(2)[/Tex]

 Adding (1) and (2), we get

[Tex]2 X=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]+\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right]\\ =\left[\begin{array}{ll} 7+3 & 0+0 \\ 2+0 & 5+3 \end{array}\right]\\ =\left[\begin{array}{cc} 10 & 0 \\ 2 & 8 \end{array}\right]\\ \Rightarrow X=\frac{1}{2}\left[\begin{array}{ll} 10 & 0 \\ 2 & 8 \end{array}\right]=\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]\\ X+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]+Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]\\ \Rightarrow Y=\left[\begin{array}{ll} 7 & 0 \\ 2 & 5 \end{array}\right]-\left[\begin{array}{ll} 5 & 0 \\ 1 & 4 \end{array}\right]\\ \Rightarrow Y=\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right][/Tex]

(ii) Given: [Tex]2 X+3 Y=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \ \ \ -(1)\\ 3 X+2 Y=\left[\begin{array}{cc} 2 & -2 \\ -1 & 5 \end{array}\right] \ \ \ -(2)[/Tex]

Now, multiply equation (1) by 2 and equation (2) by 3 we get

[Tex]4 X+6 Y=\left[\begin{array}{ll} 4 & 6 \\ 8 & 0 \end{array}\right] \ \ \ -(3)\\ 9 X+6 Y=\left[\begin{array}{cc} 6 & -6 \\ -3 & 15 \end{array}\right] \ \ \ -(4)[/Tex]

Subtracting equation (4) from (3), we get,

[Tex](4 X+6 Y)-(9 X+6 Y)=\left[\begin{array}{ll} 4 & 6 \\ 8 & 0 \end{array}\right]-\left[\begin{array}{cc} 6 & -6 \\ -3 & 15 \end{array}\right]\\ \Rightarrow-5 X=\left[\begin{array}{cc} 4-6 & 6-(-6) \\ 8-(-3) & 0-15 \end{array}\right]\\ =\left[\begin{array}{cc} -2 & 12 \\ 11 & -15 \end{array}\right]\\ \Rightarrow X=-\frac{1}{5}\left[\begin{array}{cc} -2 & 12 \\ 11 & -15 \end{array}\right]=\left[\begin{array}{cc} \frac{2}{5} & \frac{-12}{5} \\ \frac{-11}{5} & 3 \end{array}\right] [/Tex]

[Tex]2 X +3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 2\left[\begin{array}{ll} \frac{2}{5} & \frac{-12}{5} \\ \frac{-11}{5} & 3 \end{array}\right]+3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} \frac{4}{5} & \frac{-24}{5} \\ \frac{-22}{5} & 6 \end{array}\right]+3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 3 Y =\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right]-\left[\begin{array}{cc} \frac{4}{5} & \frac{-24}{5} \\ \frac{-22}{5} & 6 \end{array}\right] \\ \Rightarrow Y=\frac{1}{3}\left[\begin{array}{cc} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6 \end{array}\right] \\ \Rightarrow Y=\left[\begin{array}{cc} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{array}\right] [/Tex]

Question 8. Find X, if [Tex]Y=\begin{bmatrix}3 & 2 \\1 & 4 \\\end{bmatrix}   [/Tex]and [Tex]2X + Y=\begin{bmatrix}1 &0\\-3 & 2 \\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{array}{l} 2 X+Y=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right] \\ \Rightarrow 2 X+\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right]=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} 1 & 0 \\ -3 & 2 \end{array}\right]-\left[\begin{array}{cc} 3 & 2 \\ 1 & 4 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} 1-3 & 0-2 \\ -3 & -1 & 2-4 \end{array}\right] \\ \Rightarrow 2 X=\left[\begin{array}{cc} -2 & -2 \\ -4 & -2 \end{array}\right] \\ \Rightarrow X=\frac{1}{2}\left[\begin{array}{cc} -2 & -2 \\ -4 & -2 \end{array}\right] \\ ∴ X=\left[\begin{array}{cc} -1 & -1 \\ -2 & -1 \end{array}\right] \end{array}[/Tex]

Question 9. Find X and Y, if [Tex]2\begin{bmatrix}1 &  3\\0 & x \\\end{bmatrix}+\begin{bmatrix}y & 0 \\1 & 2 \\\end{bmatrix}=\begin{bmatrix}5 & 6 \\1 & 8 \\\end{bmatrix}[/Tex]

Solution:

Given: [Tex]2\left[\begin{array}{ll} 1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 & 6 \\ 0 & 2 x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]\\ \Rightarrow\left[\begin{array}{cc} 2+y & 6 \\ 1 & 2 x+x \end{array}\right]^{2}=\left[\begin{array}{cc} 5 & 6 \\ 1 & 8 \end{array}\right][/Tex]

Equating corresponding entries, we have 

2 + y = 5 and 2x + 2 = 8

y = 5 – 2 and 2(x + 1) = 8

y = 3 and x + 1 = 4

Therefore, y = 3 and x = 3 

Question 10. Solve the equation for x, y, z and t, if [Tex]2\begin{bmatrix}x & z\\y & t \\\end{bmatrix}+3\begin{bmatrix}1 & -1\\0 & 2 \\\end{bmatrix}=3\begin{bmatrix}3 & 5\\4 &  6\\\end{bmatrix}[/Tex]

Solution:

Given: [Tex]2\left[\begin{array}{ll} x & z \\ y & t \end{array}\right]+3\left[\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right]=3\left[\begin{array}{ll} 3 & 5 \\ 4 & 6 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 x & 2 z \\ 2 y & 2 t \end{array}\right]+\left[\begin{array}{cc} 3 & -3 \\ 0 & 6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 2 x+3 & 2 z-3 \\ 2 y+0 & 2 t+6 \end{array}\right]=\left[\begin{array}{cc} 9 & 15 \\ 12 & 18 \end{array}\right][/Tex]

On comparing both sides, we have 

2x + 3 = 9 ⇒ 2x = 9 – 3 ⇒ 2x = 6 ⇒ x = 3

2z – 3 = 15 ⇒ 2z = 15 + 3 ⇒ 2z = 18 ⇒ z = 9

2y = 12 ⇒ y = 6

2t + 6 = 18 ⇒ 2t = 18 – 6 ⇒ 2t = 12 ⇒ t = 6 

Therefore, x = 3, y = 6, z = 9, t = 6 

Question 11. If [Tex]x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 10 \\ 5 \end{array}\right] [/Tex], find the values of x and y.

Solution:

Given: [Tex]x\left[\begin{array}{l} 2 \\ 3 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 1 \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{c} 2 x \\ 3 x \end{array}\right]+\left[\begin{array}{c} -y \\ y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] \\ \Rightarrow\left[\begin{array}{c} 2 x-y \\ 3 x+y \end{array}\right]=\left[\begin{array}{c} 10 \\ 5 \end{array}\right] [/Tex]

Equating corresponding entries, we have

2x – y = 10           -(1)

3x + y = 5           -(2)

Adding eq.(1) and (2), we have 5x = 15 ⇒ x = 3

Putting x = 3 in eq.(2)

9 + y = 5 ⇒ y = -4

Therefore, x = 3 and y = -4

Question 12. Given [Tex]3\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]=\left[\begin{array}{cc} x & 0 \\ -1 & 2 w \end{array}\right]+\left[\begin{array}{cc} 4 & x+y \\ z+w & 3 \end{array}\right] [/Tex], find the values of x, y, z and w. 

Solution:

Given: [Tex]3\left[\begin{array}{cc} x & y \\ z & w \end{array}\right]=\left[\begin{array}{cc} x & 0 \\ -1 & 2 w \end{array}\right]+\left[\begin{array}{cc} 4 & x+y \\ z+w & 3 \end{array}\right][/Tex]

[Tex]\Rightarrow\left[\begin{array}{ll} 3 x & 3 y \\ 3 z & 3 w \end{array}\right]=\left[\begin{array}{cc} x+4 & 6+x+y \\ -1+z+w & 2 w+3 \end{array}\right][/Tex]

Equating corresponding entries, we have

3x = x + 4 ⇒ 2x = 4 ⇒ x = 2

and 3y = 6 + x + y

⇒ 2y = 6 + 2

⇒ 2y = 8

⇒ y = 4

and 3z = -1 + z + w ⇒ 2z – w = – 1           -(1)

and 3w = 2w + 3 ⇒ w = 3

Putting w = 3 in eq(i), 2z – 3 = -1  

⇒ 2z = 2 ⇒ z = 1

Therefore, x = 2, y = 4, z = 1, w = 3

Question 13. If [Tex]F(x)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right] [/Tex], show that F(x) F(y) = F(x + y).

Solution:

[Tex]\begin{aligned} &\text {  } F(x)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right], F(y)=\left[\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &F(x+y)=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &F(x) F(y)=\left[\begin{array}{ccc} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}[/Tex]

[Tex]=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{array}\right][/Tex]

[Tex]=\left[\begin{array}{ccc} \cos x \cos y-\sin x \sin y+0 & -\cos x \sin y-\sin x \cos y+0 & 0 \\ \sin x \cos y+\cos x \sin y+0 & -\sin x \sin y+\cos x \cos y+0 & 0 \\ 0 & 0 & 0 \end{array}\right][/Tex]

= F(x + y) 

= F(x) F(y) = F(x + y) 

Question 14. Show that

[Tex](i) \left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right] \neq\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right][/Tex]

[Tex]\text { (ii) }\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] \neq\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

Solution:

(i) L.H.S =[Tex]\left[\begin{array}{cc} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\\ =\left[\begin{array}{ll} 5(2)-1(3) & 5(1)-1(4) \\ 6(2)+7(3) & 6(1)+7(4) \end{array}\right]\\ =\left[\begin{array}{cc} 10-3 & 5-4 \\ 12+21 & 6+28 \end{array}\right]\\ =\left[\begin{array}{cc} 7 & 1 \\ 33 & 34 \end{array}\right] \ \ \ -(1)[/Tex]

R.H.S = [Tex]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{ll} 5 & -1 \\ 6 & 7 \end{array}\right]\\ =\left[\begin{array}{ll} 2(5)+1(6) & 2(-1)+1(7) \\ 3(5)+4(6) & 3(-1)+4(7) \end{array}\right]\\ =\left[\begin{array}{cc} 10+6 & -2+7 \\ 15+24 & -3+28 \end{array}\right]\\ =\left[\begin{array}{ll} 16 & 5 \\ 39 & 25 \end{array}\right] \ \ \ -(2) [/Tex]

Therefore, from (1) and (2), we get

[Tex]\text {  }\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right]\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right] \neq\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]\left[\begin{array}{rr} 5 & -1 \\ 6 & 7 \end{array}\right][/Tex]

i.e. L.H.S. ≠ R.H.S

(ii) L.H.S = [Tex]\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] [/Tex]

Multiply both the matrices 

[Tex]=\left[\begin{array}{lll} 1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\ 0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\ 1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4) \end{array}\right]\\ =\left[\begin{array}{ccc} 5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{array}\right] [/Tex]

R.H.S.= [Tex]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

[Tex]\begin{array}{l} =\left[\begin{array}{ccc} -1(1)+1(0)+0(1) & (-1) 2+1(1)+0(1) & (-1) 3+1(0)+0(0) \\ 0(1)+(-1) 0+1(1) & (0) 2+1(-1)+1(1) & (0) 3+0(-1)+1(0) \\ 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0) \end{array}\right] \\ =\left[\begin{array}{ccc} -1 & -1 & -3 \\ 1 & 0 & 0 \\ 6 & 11 & 6 \end{array}\right] \end{array}[/Tex]

Therefore,

L.H.S. ≠ R.H.S.

i.e.[Tex]\text { }\left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right] \neq\left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right][/Tex]

Question 15. Find A2 – 5A + 6I, if [Tex]A=\begin{bmatrix}2&0&1\\2&1&3\\1&-1&0\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{aligned} &A^{2}-5 A+6 I=\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]-5\left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{array}\right]+6\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &=\left[\begin{array}{lll} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1-0 & 1-3+0 \end{array}\right]-\left[\begin{array}{ccc} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{array}\right]+\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \end{aligned}[/Tex]

[Tex]\left.\begin{array}{l} =\left[\begin{array}{ccc} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{array}\right]-\left[\begin{array}{ccc} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{array}\right]+\left[\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \end{array}\right][/Tex]

[Tex]\begin{array}{l} =\left[\begin{array}{ccc} 5-10+6 & -1-0+0 & 2-5+0 \\ 9-10+0 & -2-5+6 & 5-15+0 \\ 0-5+0 & -1+5+0 & -2+0+6 \end{array}\right] \\ =\left[\begin{array}{ccc} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{array}\right] \end{array}[/Tex]

Question 16. If [Tex]A =\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\\\end{bmatrix} [/Tex], prove that A3 – 6A2 + 7A + 2I = 0

Solution:

[Tex]A=\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\\\end{bmatrix} A^{2} \\=A * A=\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right] \\ =\left[\begin{array}{lll} 1+0+4 & 0+0+0 & 2+0+6 \\ 0+0+2 & 0+4+0 & 0+2+3 \\ 2+0+6 & 0+0+0 & 4+0+9 \end{array}\right] \\ =\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right] [/Tex]

[Tex]6 A^{2} =6\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]=\left[\begin{array}{ccc} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{array}\right] \\ A^{3} =A^{2} \times A \\ =\left[\begin{array}{lll} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array}\right] \\ =\left[\begin{array}{lll} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right][/Tex]

[Tex]A^{3} – 6 A^{2}+7 A+2 I=\left[\begin{array}{ccc} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{array}\right]-\left[\begin{array}{ccc} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{array}\right]+\left[\begin{array}{ccc} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{array}\right]+\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right]\\ =\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] [/Tex]

= 0 (Zero matrix)

= R.H.S.

Hence Proved

Question 17. If [Tex]A=\begin{bmatrix}3&-2\\4&-2\\\end{bmatrix} and \:I=\begin{bmatrix}1&0\\0&1\\\end{bmatrix} [/Tex], find k so that A2 = kA – 2I

Solution:

Given: 

[Tex]A=\left[\begin{array}{rr} 3 & -2 \\ 4 & -2 \end{array}\right] \text { and } I=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ A^{2}=k A-2 I \Rightarrow\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]=k\left[\begin{array}{ll} 3 & -2 \\ 4 & -2 \end{array}\right]-2\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ \Rightarrow\left[\begin{array}{cc} 9-8 & -6+4 \\ 12-8 & -8+4 \end{array}\right]=\left[\begin{array}{cc} 3 k & -2 k \\ 4 k & -2 k \end{array}\right]-\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right]\\ \Rightarrow\left[\begin{array}{ll} 1 & -2 \\ 4 & -4 \end{array}\right]=\left[\begin{array}{ll} 3 k-2 & -2 k-0 \\ 4 k-0 & -2 k-2 \end{array}\right][/Tex]

Equating corresponding entries, we have 

3k – 2 = 1 

3k = 3  

k = 1

and 4k = 4 

k = 1 

and -4 = -2k – 2

2k = 2 

k = 1

Therefore, k = 1 

Question 18. If [Tex]A =\begin{bmatrix}0&-tan\frac{α}{2}\\tan\frac{α}{2}&0\\\end{bmatrix}  [/Tex]and I is the identity matrix of order 2, show that I + A = (I – A)[Tex]\begin{bmatrix}cosα&-sinα\\sinα&cosα\\\end{bmatrix}[/Tex]

Solution:

[Tex]\begin{array}{l} \text { L.H.S. } I+A=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]+\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right] \\ \text { Now, } I-A=\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]-\left[\begin{array}{cc} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right] \\ \text { R.H.S. }=(I-A)\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]=\left[\begin{array}{cc} 1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1 \end{array}\right]\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] \end{array}[/Tex]

[Tex]\begin{aligned} &=\left[\begin{array}{ccc} \cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha \\ \end{array}\right]\\ &\text {} \end{aligned}[/Tex]

[Tex]=\left[\begin{array}{ccc} \cos \alpha \cos \frac{\alpha}{2}+\sin \alpha \sin \frac{\alpha}{2}{\cos \frac{\alpha}{2}}  & \frac{\alpha \sin \alpha \cos \frac{\alpha}{2}+\cos \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \ \\ \hline \frac{-\cos \alpha \sin \frac{\alpha}{2}+\sin \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\sin \alpha \sin \frac{\alpha}{2}+\cos \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \end{array}\right][/Tex]

[Tex]\begin{aligned} &=\left[\begin{array}{cc} \frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{-\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} \\ \frac{\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} \end{array}\right]=\left[\begin{array}{ccc} \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \end{array}\right]=\left[\begin{array}{cc} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{array}\right]\end{aligned}[/Tex]

L.H.S. = R.H.S.

Hence, Proved. 

Question 19. A trust fund has ₹30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) Rs.1800

 (b) Rs.2000

Solution:

Let invested in the first bond = Rs x 

Then, the sum of money invested in the second bond = ₹(30000 – x)

It is given that the first bond pays 5% interest per year, and the second bond pays 7% interest per year.

Thus, in order to obtain an annual total interest of ₹1800, we get:

[Tex]\begin{bmatrix}x&30000-x\end{bmatrix}\begin{bmatrix}5/100\\7/100\end{bmatrix}=1800[/Tex]

⇒ 5x/100 + 7(30000 − x)/100 = 1800

⇒ 5x + 210000 -7x = 180000

⇒ 210000 -2x = 180000

⇒ 2x = 210000 – 180000

⇒ 2x = 30000

⇒ x = 15000

Therefore, in order to obtain an annual total interest of ₹1800, the trust fund should invest ₹15000 in the first bond and the remaining ₹15000 in the second bond.

Hence, the amount invested in each type of the bonds can be represented in matrix form with each column corresponding to a different type of bond as:

X = [Tex]\begin{bmatrix}x&30000-x\end{bmatrix}[/Tex]

Hence, the interest obtained after one year can be expressed in matrix representation as:

[Tex]\begin{bmatrix}x&30000-x\end{bmatrix}\begin{bmatrix}5/100\\7/100\end{bmatrix}=2000[/Tex]

⇒ 5x/100 + 7(30000 − x)/100 = 2000

⇒ 5x + 210000 − 7x = 200000

⇒ 210000 − 2x = 200000

⇒ 2x = 210000 – 200000

⇒ 2x = 10000

⇒ x = 5000

Therefore, in order to obtain an annual total interest of ₹2000, the trust fund should invest ₹5000 in the first bond and the remaining ₹(30000 − 5000) = ₹25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs.80, Rs.60 and Rs.40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra. 

Solution:

Let the number of books as 1 × 3 matrix = B = [Tex]\begin{bmatrix}10 dozen&8dozen&10dozen\\10*12=120&8*12=96&10*12=120\\\end{bmatrix}[/Tex]

Let the selling prices of each book is a 3 × 1 matrix S = [Tex]\begin{bmatrix}80\\60\\40\end{bmatrix}[/Tex]

Therefore, Total amount received by selling all books = BS = [Tex]\begin{bmatrix}120&96&120\end{bmatrix}\begin{bmatrix}80\\60\\40\end{bmatrix}[/Tex]

[Tex]\begin{bmatrix}120(80)&96(60)&120(40)\end{bmatrix}=\begin{bmatrix}9600&5760&4800\end{bmatrix}=\begin{bmatrix}20160\end{bmatrix}[/Tex]

Therefore, Total amount received by selling all the books = Rs 20,160

Assume X, Y, Z, W, and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3, and p × k, respectively. Choose the correct answer in Exercises 21 and 22. 

Question 21. The restriction on n, k and p so that PY + WY will be defined are:

(A) k = 3, p = n                 (B) k is arbitrary, p = 2

(C) p is arbitrary, k = 3    (D) k = 2, p = 3

Solution:

Since, Matrices P and Y are of the orders p × k and 3 × k respectively.

Therefore, matrix PY will be defined if k = 3.

Then, PY will be of the order p × k = p × 3.

Matrices W and Y are of the orders n × 3 and 3 × k = 3 × 3 respectively.

As, the number of columns in W is equal to the number of rows in Y, Matrix WY is well-defined and is of the order n × 3.

Matrices PY and WY can be added only when their orders are the same.

Therefore, PY is of the order p × 3 and WY is of the order n × 3.

Thus, we must have p = n.

Therefore, k = 3 and p = n are the restrictions on n, k and p so that PY + WY will be defined.

Therefore, answer is (A)

Question 22. If n = p, then the order of the matrix 7X – 5Z is:

(A) p × 2                (B) 2 × n 

(C) n × 3                (D) p × n

Solution:

Matrix X is of the order 2 × n.

Therefore, matrix 7X is also of the same order.

Matrix Z is of order 2 × p = 2 × n               -(∵ p = n)

Then, Matrix 5Z is also of the same order.

Now, both the matrices 7X and 5Z are of the order 2 × n.

Thus, matrix 7X – 5Z is well- defined and is of the order 2 × n.

Therefore, answer is (B)

Conclusion

Matrices are a vital tool for solving real-world problems, from representing data to performing transformations in graphics and solving systems of linear equations. Exercise 3.2 deepens the understanding of fundamental matrix operations, helping students learn how to add, subtract, and multiply matrices. These operations are crucial for many advanced applications, including physics simulations, computer graphics, data analysis, and solving linear equations. By mastering these concepts, students can approach more complex problems involving matrices with confidence.

Class 12 NCERT Solutions- Mathematics Part I – Matrices – FAQs

What are the conditions for adding or subtracting two matrices?

Matrices can be added or subtracted only if they have the same dimensions, meaning they must have the same number of rows and columns. The operations are performed element-wise.

When is matrix multiplication possible?

Matrix multiplication is possible when the number of columns in the first matrix equals the number of rows in the second matrix. The resulting product matrix will have dimensions equal to the number of rows of the first matrix and the number of columns of the second matrix.

What is scalar multiplication in matrices?

Scalar multiplication involves multiplying each element of a matrix by a fixed number or scalar. This operation scales the matrix by that constant factor, maintaining the same dimensions.

What is the significance of matrices in real-life applications?

Matrices are used in various real-life applications, including computer graphics for image transformations, solving systems of linear equations, economic modeling, physics simulations, and data analysis. They help represent and manipulate data in a structured way.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Maths Syllabus 2025-26 with Marks Distribution

The table below shows the marks weightage along with the number of periods required for teaching. The Maths theory paper is of 80 marks, and the internal assessment is of 20 marks which totally comes out to be 100 marks.

CBSE Class 12 Maths Syllabus And Marks Distribution 2023-24

Max Marks: 80

No.UnitsMarks
I.Relations and Functions08
II.Algebra10
III.Calculus35
IV.Vectors and Three – Dimensional Geometry14
V.Linear Programming05
VI.Probability08
Total Theory80
Internal Assessment20
Grand Total100

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions like sin-1 x, cos-1 x and tan-1 x, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals 

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three – dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean of random variable.

Students can go through the CBSE Class 12 Syllabus to get the detailed syllabus of all subjects. Get access to interactive lessons and videos related to Maths and Science with ANAND CLASSES’S App/ Tablet.

Frequently Asked Questions on CBSE Class 12 Maths Syllabus 2025-26

Q1

Is Calculus an important chapter in the CBSE Class 12 Maths Syllabus?

Yes, Calculus is an important chapter in the CBSE Class 12 Maths Syllabus. It is for 35 marks which means that if a student is thorough with this chapter will be able to pass the final exam.

Q2

How many units are discussed in the CBSE Class 12 Maths Syllabus?

In the CBSE Class 12 Maths Syllabus, about 6 units are discussed, which contains a total of 13 chapters.

Q3

How many marks are allotted for internals in the CBSE Class 12 Maths syllabus?

About 20 marks are allotted for internals in the CBSE Class 12 Maths Syllabus. Students can score it with ease through constant practice.