Anand Classes offers expertly crafted Limits and Derivatives NCERT Solutions Exercise 12.2 Class 11 (Set-3) of Chapter-12 to help students gain a deep understanding of calculus concepts in a simple and structured way. These solutions strictly follow the latest CBSE syllabus and NCERT textbook, providing clear, step-by-step explanations for every question. Ideal for Class 11 students preparing for exams, these solutions make complex topics easier to grasp and apply. Click the print button to download study material and notes.
NCERT Question 10 : Find the derivative of $\cos x$ from first principle.
Solution:
Given,
$$f(x) = \cos x$$
So,
$$f(x+h) = \cos(x+h)$$
Using first principle:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$
Substitute values:
$$f'(x) = \lim_{h \to 0} \frac{\cos(x+h) – \cos x}{h}$$
Using the trigonometric identity:
$$\cos A – \cos B = -2 \sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$
Let $A = x+h$ and $B = x$
$$\cos(x+h) – \cos x = -2 \sin\left(\frac{(x+h)+x}{2}\right)\sin\left(\frac{(x+h)-x}{2}\right)$$
$$ = -2 \sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)$$
So,
$$f'(x) = \lim_{h \to 0} \dfrac{-2 \sin\left(\dfrac{2x+h}{2}\right)\sin\left(\dfrac{h}{2}\right)}{h}$$
Now multiply and divide by 2:
$$f'(x) = \lim_{h \to 0} \left[-2 \sin\left(\dfrac{2x+h}{2}\right)\right] \cdot \lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{h} \cdot 2$$
Rewrite:
$$f'(x) = \lim_{h \to 0} \left[-\sin\left(\dfrac{2x+h}{2}\right)\right] \cdot \lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}$$
We know:
$$\lim_{y \to 0} \frac{\sin y}{y} = 1$$
Thus:
$$f'(x) = -\sin\left(\frac{2x+0}{2}\right) \cdot 1$$
$$f'(x) = -\sin x$$
Final Answer
$$\boxed{f'(x) = -\sin x}$$
Perfect for Class 11–12 Calculus and JEE preparation — learn derivatives from basics with Anand Classes! 🚀
NCERT Question 11(i). Find the derivative of $ \sin x\cos x $ from first principle
Solution:
Let
$$f(x)=\sin x\cos x.$$
Then
$$f(x+h)=\sin(x+h)\cos(x+h).$$
From first principle,
$$ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$
$$ f'(x) =\lim_{h\to 0}\frac{\sin(x+h)\cos(x+h)-\sin x\cos x}{h}.$$
Use the product-to-sum identity $$ \sin A\cos B=\tfrac{1}{2}\big(\sin(A+B)+\sin(A-B)\big) $$
Applying it to both terms,
$$ \sin(x+h)\cos(x+h)=\tfrac{1}{2}\sin(2x+2h)$$
$$\sin x\cos x=\tfrac{1}{2}\sin(2x).$$
So
$$ f'(x)=\lim_{h\to 0}\frac{\tfrac{1}{2}\sin(2x+2h)-\tfrac{1}{2}\sin(2x)}{h}$$
$$f'(x)=\tfrac{1}{2}\lim_{h\to 0}\frac{\sin(2x+2h)-\sin(2x)}{h}.$$
Use the identity $$\sin A-\sin B=2\cos\big(\dfrac{A+B}{2}\big)\sin\big(\dfrac{A-B}{2}\big)$$ with $A=2x+2h$ and $B=2x$:
$$
\sin(2x+2h)-\sin(2x)=2\cos(2x+h)\sin(h).
$$
Thus
$$ f'(x)=\tfrac{1}{2}\lim_{h\to 0}\frac{2\cos(2x+h)\sin(h)}{h}$$
$$ f'(x) =\lim_{h\to 0}\cos(2x+h)\cdot\frac{\sin(h)}{h}$$
Since $\displaystyle\lim_{h\to 0}\frac{\sin(h)}{h}=1$ and $\displaystyle\lim_{h\to 0}\cos(2x+h)=\cos(2x)$, we get
$$
f'(x)=\cos(2x)\cdot 1=\cos(2x).
$$
$$\boxed{\dfrac{d}{dx}\big(\sin x\cos x\big)=\cos(2x)}$$
Top-quality worked calculus solutions and practice material by Anand Classes — ideal for CBSE and JEE revision.
NCERT Question 11 (ii) : Find the derivative of sec x from first principle.
Solution:
Let
$ f(x) = \sec(x) $
Then,
$ f(x+h) = \sec(x+h) $
Using the first principle of derivative:
$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}
$$
$$
f'(x) = \lim_{h \to 0} \frac{\sec(x+h) – \sec(x)}{h}
$$
Rewrite using $\sec(x) = \dfrac{1}{\cos(x)}$:
$$
f'(x) = \lim_{h \to 0} \dfrac{\dfrac{1}{\cos(x+h)} – \dfrac{1}{\cos(x)}}{h}
$$
Take LCM:
$$
f'(x) = \lim_{h \to 0} \frac{\cos(x) – \cos(x+h)}{h \cos(x+h)\cos(x)}
$$
Use identity:
$\cos A – \cos B = -2 \sin\Big(\frac{A+B}{2}\Big)\sin\Big(\frac{A-B}{2}\Big)$
Let $A = x+h$ and $B = x$:
$$
\cos(x) – \cos(x+h)
= 2 \sin\Big(\frac{2x+h}{2}\Big)\sin\Big(\frac{h}{2}\Big)
$$
So:
$$
f'(x) =
\lim_{h \to 0}
\frac{2 \sin\left(\dfrac{2x+h}{2}\right)\sin\left(\dfrac{h}{2}\right)}
{h \cos(x+h)\cos(x)}
$$
Separate limits:
$$
f'(x) =
\lim_{h \to 0}
\frac{2\sin\left(x + \dfrac{h}{2}\right)}{\cos(x+h)\cos(x)}
\cdot
\lim_{h \to 0}
\frac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}
$$
We know:
$$
\lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}} = 1
$$
Now take the limit:
$$
f'(x) =
\dfrac{2 \sin(x)}{\cos^2(x)}
$$
Use
$\dfrac{\sin(x)}{\cos(x)} = \tan(x)$
$\dfrac{1}{\cos(x)} = \sec(x)$
$$
f'(x) = \sec(x)\tan(x)
$$
✅ Final Answer
$$
\boxed{f'(x) = \sec(x)\tan(x)}
$$
NCERT Question 11 (iii) : Find the derivative of $5\sec x + 4\cos x$
Solution:
Let
$$f(x) = 5\sec x + 4\cos x$$
Differentiate both sides:
$$
f'(x) = \frac{d}{dx}(5\sec x) + \frac{d}{dx}(4\cos x)
$$
Using standard derivatives:
$\frac{d}{dx}(\sec x) = \sec x \tan x$
$\frac{d}{dx}(\cos x) = -\sin x$
So,
$$
f'(x) = 5(\sec x \tan x) + 4(-\sin x)
$$
$$
f'(x) = 5\sec x \tan x – 4\sin x
$$
✅ Final Answer
$$
\boxed{f'(x) = 5\sec x \tan x – 4\sin x}
$$
Enhance your calculus skills with Anand Classes — trusted for board and competitive exam preparation!
Question 11 (iv). Find the derivative of cosec x from first principle
Solution:
Let
$$f(x)=\csc x=\frac{1}{\sin x}.$$
Using the first principle,
$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
=\lim_{h\to 0}\frac{\csc(x+h)-\csc x}{h}.
$$
Write in sine form and combine:
$$
f'(x) =\lim_{h\to 0}\dfrac{\dfrac{1}{\sin(x+h)}-\dfrac{1}{\sin x}}{h}$$
$$f'(x) =\lim_{h\to 0}\dfrac{\sin x-\sin(x+h)}{h\sin x\sin(x+h)}.$$
Use the identity $$\sin A-\sin B=2\cos\big(\frac{A+B}{2}\big)\sin\big(\frac{A-B}{2}\big)$$ with $A=x$ and $B=x+h$:
$$
\sin x-\sin(x+h)= -2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right).
$$
Substitute:
$$
f'(x)=\lim_{h\to 0}\frac{-2\cos\big(x+\frac{h}{2}\big)\sin\big(\frac{h}{2}\big)}
{h\sin x\sin(x+h)}.
$$
Rearrange factors:
$$
f'(x)= -\lim_{h\to 0}\frac{\cos\big(x+\frac{h}{2}\big)}{\sin x\sin(x+h)}
\cdot\frac{2\sin\big(\frac{h}{2}\big)}{h}.
$$
Since $\displaystyle\lim_{h\to 0}\frac{2\sin(h/2)}{h}=1$ and
$\displaystyle\lim_{h\to 0}\cos\big(x+\tfrac{h}{2}\big)=\cos x$, and
$\lim_{h\to 0}\sin(x+h)=\sin x$, we get
$$
f'(x)= -\frac{\cos x}{\sin x\cdot\sin x}
= -\frac{\cos x}{\sin^2 x}.
$$
Write in standard trigonometry form:
$$
f'(x)=-\csc x\cot x.
$$
$$\boxed{,\dfrac{d}{dx}(\csc x) = -\csc x\cot x,}$$
Download compact derivative notes by Anand Classes — ideal for CBSE and JEE calculus practice.
NCERT Question 11 (v). Find the derivative of $(3 \cot x + 5 \csc x)$
Solution :
Let
$$ f(x) = 3\cot x + 5\csc x. $$
Taking derivative on both sides:
$$ f'(x) = \frac{d}{dx}(3\cot x) + \frac{d}{dx}(5\csc x). $$
Using standard derivatives,
$$ \frac{d}{dx}(\cot x) = -\csc^2 x $$
and
$$ \frac{d}{dx}(\csc x) = -\csc x \cot x. $$
So,
$$
f'(x) = 3(-\csc^2 x) + 5(-\csc x \cot x).
$$
Therefore,
$$
f'(x) = -3\csc^2 x – 5\csc x \cot x.
$$
$$
\boxed{f'(x) = -3\csc^2 x – 5\csc x \cot x}
$$
Perfect for JEE and CBSE — Download derivative notes by Anand Classes for more practice!
NCERT Question 11 (v). Find derivative of $(3\cot x + 5\csc x)$ using first principle
Solution :
Let
$$f(x) = 3 \cot x + 5 \csc x$$
Using first principle,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$
So,
$$f'(x) = \lim_{h \to 0} \frac{3\cot(x+h) + 5\csc(x+h) – 3\cot x – 5\csc x}{h}$$
Separate terms,
$$f'(x) = 3 \lim_{h \to 0} \frac{\cot(x+h) – \cot x}{h} + 5 \lim_{h \to 0} \frac{\csc(x+h) – \csc x}{h}$$
Using known first principle limits,
$$\lim_{h \to 0} \frac{\cot(x+h) – \cot x}{h} = -\csc^2 x$$
$$\lim_{h \to 0} \frac{\csc(x+h) – \csc x}{h} = -\csc x \cot x$$
Substituting,
$$f'(x) = 3(-\csc^2 x) + 5(-\csc x \cot x)$$
Final answer:
$$\boxed{f'(x) = -3\csc^2 x – 5\csc x \cot x}$$
High-quality calculus notes by Anand Classes — perfect for Class 11 & 12 CBSE and JEE preparation 🚀📘
Question 11(vi). Find the derivative of $5\sin x – 6\cos x + 7$ using first principle
Solution
Let
$$f(x)=5\sin x – 6\cos x + 7.$$
Then
$$f(x+h)=5\sin(x+h)-6\cos(x+h)+7.$$
By the first principle,
$$ f'(x) =\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} $$
$$ f'(x) =\lim_{h\to 0}\frac{5[\sin(x+h)-\sin x]-6[\cos(x+h)-\cos x]}{h}.$$
Use the trigonometric identities
$$\sin(A)-\sin(B)=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right),$$
$$\cos(A)-\cos(B)=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right).$$
Apply them with $A=x+h,\ B=x$:
$$\sin(x+h)-\sin x=2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right),$$
$$\cos(x+h)-\cos x=-2\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right).$$
Substitute into the limit:
$$
f'(x)=\lim_{h\to 0}\frac{5\cdot 2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)
-6\cdot\big(-2\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\big)}{h}.
$$
Simplify the numerator:
$$
f'(x)=\lim_{h\to 0}\frac{\big(10\cos\left(x+\tfrac{h}{2}\right)
+12\sin\left(x+\tfrac{h}{2}\right)\big)\sin\left(\tfrac{h}{2}\right)}{h}.
$$
Write $\dfrac{\sin(h/2)}{h}=\dfrac{1}{2}\cdot\dfrac{\sin(h/2)}{h/2}$ to use the standard limit:
$$
f'(x)=\lim_{h\to 0}\left(10\cos\left(x+\tfrac{h}{2}\right)+12\sin\left(x+\tfrac{h}{2}\right)\right)\cdot\frac{1}{2}\cdot\frac{\sin(h/2)}{h/2}.
$$
Now take limits:
$$
\lim_{h\to 0}\frac{\sin(h/2)}{h/2}=1,\qquad
\lim_{h\to 0}\cos\left(x+\tfrac{h}{2}\right)=\cos x,\qquad
\lim_{h\to 0}\sin\left(x+\tfrac{h}{2}\right)=\sin x
$$
Therefore
$$
f'(x)=\frac{1}{2}\big(10\cos x + 12\sin x\big)=5\cos x + 6\sin x.
$$
$$\boxed{f'(x)=5\cos x + 6\sin x}$$
Download practice sheets and solved derivatives by Anand Classes — perfect for CBSE and JEE calculus revision.
Question 11(viii) : Find the derivative of $f(x)=2\tan x – 7\sec x$ using first principle
Solution:
Let
$$f'(x)=2\frac{d}{dx}(\tan x)-7\frac{d}{dx}(\sec x).$$
First compute $\dfrac{d}{dx}(\tan x)$ from first principle. Write $\tan x=\dfrac{\sin x}{\cos x}$.
$$
\frac{d}{dx}(\tan x)
=\lim_{h\to 0}\frac{\tan(x+h)-\tan x}{h}
=\lim_{h\to 0}\frac{\dfrac{\sin(x+h)}{\cos(x+h)}-\dfrac{\sin x}{\cos x}}{h}.
$$
Combine the fraction:
$$
\frac{\tan(x+h)-\tan x}{h}
=\frac{1}{h}\cdot\frac{\sin(x+h)\cos x-\sin x\cos(x+h)}{\cos(x+h)\cos x}.
$$
Use the identity $\sin A\cos B-\cos A\sin B=\sin(A-B)$ with $A=x+h,\ B=x$:
$$
\sin(x+h)\cos x-\sin x\cos(x+h)=\sin((x+h)-x)=\sin h.
$$
Thus
$$
\frac{\tan(x+h)-\tan x}{h}
=\frac{1}{h}\cdot\frac{\sin h}{\cos(x+h)\cos x}
=\frac{\sin h}{h}\cdot\frac{1}{\cos(x+h)\cos x}.
$$
Taking $h\to0$ and using $\lim_{h\to0}\dfrac{\sin h}{h}=1$ and $\lim_{h\to0}\cos(x+h)=\cos x$,
$$
\frac{d}{dx}(\tan x)=\frac{1}{\cos^2 x}=\sec^2 x.
$$
Next compute $\dfrac{d}{dx}(\sec x)$ from first principle. Write $\sec x=\dfrac{1}{\cos x}$.
$$
\frac{d}{dx}(\sec x)
=\lim_{h\to 0}\frac{\sec(x+h)-\sec x}{h}
=\lim_{h\to 0}\frac{\dfrac{1}{\cos(x+h)}-\dfrac{1}{\cos x}}{h}.
$$
Combine into one fraction:
$$
\frac{\sec(x+h)-\sec x}{h}
=\frac{1}{h}\cdot\frac{\cos x-\cos(x+h)}{\cos(x+h)\cos x}.
$$
Use the identity $\cos A-\cos B=-2\sin!\big(\tfrac{A+B}{2}\big)\sin!\big(\tfrac{A-B}{2}\big)$ with $A=x,\ B=x+h$:
$$
\cos x-\cos(x+h)=2\sin!\left(x+\tfrac{h}{2}\right)\sin!\left(\tfrac{h}{2}\right).
$$
So
$$
\frac{\sec(x+h)-\sec x}{h}
=\frac{2\sin!\left(x+\tfrac{h}{2}\right)}{\cos(x+h)\cos x}\cdot\frac{\sin(h/2)}{h}.
$$
Rewrite $\dfrac{\sin(h/2)}{h}=\dfrac{1}{2}\cdot\dfrac{\sin(h/2)}{(h/2)}$ and take limits. Using $\lim_{u\to0}\dfrac{\sin u}{u}=1$ and $\cos(x+h)\to\cos x$,
$$
\frac{d}{dx}(\sec x)
=\frac{2\sin x}{\cos^2 x}\cdot\frac{1}{2}
=\frac{\sin x}{\cos^2 x}
=\sec x\tan x.
$$
Now combine results:
$$
f'(x)=2\sec^2 x – 7\sec x\tan x.
$$
$$\boxed{,f'(x)=2\sec^2 x – 7\sec x\tan x,}$$
Practice full step-by-step derivative proofs and downloadable notes from Anand Classes — perfect for CBSE and JEE revision.

