Integrals NCERT Solutions Miscellaneous Exercise Chapter-7 Class 12 Math Notes PDF Free Download (Set-3)

โญโญโญโญโœฉ (4.9/5 from 78329 reviews)

NCERT Question.21 : Evaluate the integral
$$\displaystyle \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\;dx$$

Solution

$$\displaystyle \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\;dx$$

Use partial fractions. Assume
$$
\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x+2}.
$$
Multiplying through by $(x+1)^{2}(x+2)$ gives
$$
x^{2}+x+1=A(x+1)(x+2)+B(x+2)+C(x+1)^{2}.
$$
Expanding and comparing coefficients yields the system
$$
\begin{cases}
A+C=1,\\
3A+B+2C=1,\\
2A+2B+C=1.
\end{cases}
$$
Solving gives
$$
A=-2,\quad B=1,\quad C=3.
$$

Thus
$$
\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}+\frac{3}{x+2}.
$$

Integrate termwise:
$$
\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\;dx
=\int\Bigl(-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}+\frac{3}{x+2}\Bigr)\;dx$$

$$\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\;dx=-2\ln|x+1|-\frac{1}{x+1}+3\ln|x+2|+C$$

Final Result

$$
\boxed{\;\displaystyle -2\ln|x+1|+3\ln|x+2|-\frac{1}{x+1}+C\;}
$$

Download clear, exam-focused notes by Anand Classes โ€” perfect for JEE and CBSE students looking for concise worked solutions and reliable practice material.


NCERT Question.22 : Evaluate the integral
$$\displaystyle \int \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\;dx$$

Solution

$$
\displaystyle \int \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\;dx
$$

Put
$$
x=\cos 2\theta\qquad\Rightarrow\qquad dx=-2\sin 2\theta\;d\theta=-4\sin\theta\cos\theta\;d\theta.
$$
Note
$$
\sqrt{\frac{1-x}{1+x}}=\sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}=\sqrt{\frac{2\sin^{2}\theta}{2\cos^{2}\theta}}=\tan\theta
$$
so $\tan^{-1}\bigl(\sqrt{\dfrac{1-x}{1+x}}\bigr)=\theta$. Hence
$$
\int \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\;dx
=\int \theta\;(-4\sin\theta\cos\theta)\;d\theta
=-4\int \theta\sin\theta\cos\theta\;d\theta.
$$

Use $\sin\theta\cos\theta=\tfrac{1}{2}\sin 2\theta$ to get
$$
-4\int \theta\sin\theta\cos\theta\;d\theta
=-2\int \theta\sin 2\theta\;d\theta.
$$

Integrate by parts with $u=\theta,\;dv=\sin 2\theta\;d\theta$ so $du=d\theta,\;v=-\tfrac{1}{2}\cos 2\theta$:
$$
-2\int \theta\sin 2\theta\;d\theta
=-2\Bigl(\theta\cdot\bigl(-\tfrac{1}{2}\cos 2\theta\bigr)-\int \bigl(-\tfrac{1}{2}\cos 2\theta\bigr)\;d\theta\Bigr).
$$
So
$$
-2\int \theta\sin 2\theta\;d\theta
=\theta\cos 2\theta-\tfrac{1}{2}\sin 2\theta +C.
$$

Return to $x$. Since $\cos 2\theta=x$ and $\sin 2\theta=\sqrt{1-x^{2}}$ (taking the principal sign on $-1<x<1$), and $\theta=\tan^{-1}\bigl(\sqrt{\tfrac{1-x}{1+x}}\bigr)$ or equivalently $\theta=\tfrac{1}{2}\cos^{-1}x$, we may write the antiderivative in simpler form:

$$\theta\cos 2\theta-\tfrac{1}{2}\sin 2\theta +C=\displaystyle \frac{x}{2}\cos^{-1}x-\frac{1}{2}\sqrt{1-x^{2}}+C$$

$$\displaystyle \int \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\;dx=\displaystyle \frac{x}{2}\cos^{-1}x-\frac{1}{2}\sqrt{1-x^{2}}+C$$

Final Result

$$
\boxed{\displaystyle \;\frac{x}{2}\cos^{-1}x-\frac{1}{2}\sqrt{1-x^{2}}+C\;}$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality study material and clear, step-by-step solutions.


NCERT Question.23 : Evaluate the integral
$$\int \frac{\sqrt{x^{2}+1}}{x^{4}}\Bigl[\log(x^{2}+1)-2\log x\Bigr]\;dx$$

Solution

$$\int \frac{\sqrt{x^{2}+1}}{x^{4}}\Bigl[\log(x^{2}+1)-2\log x\Bigr]\;dx$$

First simplify the logarithm:
$$
\log(x^{2}+1)-2\log x=\log\Bigl(1+\frac{1}{x^{2}}\Bigr).
$$

Hence the integral is
$$
I=\int \frac{\sqrt{x^{2}+1}}{x^{4}}\;\log\Bigl(1+\frac{1}{x^{2}}\Bigr)\;dx.
$$

Put $u=\dfrac{1}{x}$ (so $x=\dfrac{1}{u},\;dx=-\dfrac{1}{u^{2}}\;du$). Then
$$
\sqrt{x^{2}+1}=\frac{\sqrt{1+u^{2}}}{u},\qquad
\frac{\sqrt{x^{2}+1}}{x^{4}}=u^{3}\sqrt{1+u^{2}}.
$$

Thus
$$
I=-\int u\sqrt{1+u^{2}}\;\log(1+u^{2})\;du.
$$

Now put $t=1+u^{2}$ so $dt=2u\;du$ and $u\;du=\frac{1}{2}\;dt$. The integral becomes
$$I=-\frac{1}{2}\int t^{1/2}\log t\;dt$$

Integrate by parts with $A=\log t,\ dB=t^{1/2}dt$ (so $dA=\dfrac{dt}{t},\ B=\dfrac{2}{3}t^{3/2}$):

$$
I=-\frac{1}{2}\Bigl[\dfrac{2}{3}t^{3/2}\log t-\dfrac{2}{3}\int t^{1/2}dt\Bigr]$$

$$I=-\frac{1}{2}\cdot\dfrac{2}{3}t^{3/2}\Bigl(\log t-\frac{2}{3}\Bigr).
$$

Hence
$$
I=-\frac{1}{3}t^{3/2}\Bigl(\log t-\frac{2}{3}\Bigr)+C.
$$

Return to $u$ and then to $x$. Since $t=1+u^{2}=1+\dfrac{1}{x^{2}}$ and
$$
t^{3/2}=\Bigl(1+\frac{1}{x^{2}}\Bigr)^{3/2}=\frac{(x^{2}+1)^{3/2}}{x^{3}}
$$

we obtain the final form
$$
\boxed{\displaystyle I
=-\frac{1}{3}\frac{(x^{2}+1)^{3/2}}{x^{3}}\left[\log\Bigl(1+\frac{1}{x^{2}}\Bigr)-\frac{2}{3}\right]+C.}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality study material and clear worked solutions.


NCERT Question.24 : Evaluate the integral
$$
\displaystyle I=\int_{\pi/2}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)\;dx
$$

Solution

$$
\displaystyle I=\int_{\pi/2}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)\;dx
$$

Use the half-angle identities :
$$
1-\cos x=2\sin^{2}\frac{x}{2}\; , \qquad
\sin x=2\sin\frac{x}{2} 2\cos\frac{x}{2}.
$$

Hence
$$
\frac{1-\sin x}{1-\cos x}=\frac{1}{2}\csc^{2}\frac{x}{2}-\cot\frac{x}{2}.
$$

Set
$$
f(x)=-\cot\frac{x}{2}\;, \qquad f'(x)=\frac{1}{2}\csc^{2}\frac{x}{2}\;
$$

so the integrand is $f'(x)+f(x)$. Therefore
$$
e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)=e^{x}\bigl(f(x)+f'(x)\bigr)
$$

and an antiderivative is $e^{x}f(x)$ because
$$
\frac{d}{dx}\bigl(e^{x}f(x)\bigr)=e^{x}f(x)+e^{x}f'(x).
$$

$$
\displaystyle I=\int_{\pi/2}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right)\;dx=\int_{\pi/2}^{\pi} e^{x}\left(\frac{1}{2}\csc^{2}\frac{x}{2}-\cot\frac{x}{2}\right)\;dx
$$

Thus
$$
I=\Bigl[e^{x}\bigl(-\cot\frac{x}{2}\bigr)\Bigr]_{x=\pi/2}^{x=\pi}.
$$

Evaluate the boundary terms:
$$
\cot\frac{\pi}{2}=0\;, \qquad \cot\frac{\pi}{4}=1\;
$$

so
$$
I=\bigl(e^{\pi}\cdot 0\bigr)-\bigl(e^{\pi/2}\cdot(-1)\bigr)=e^{\pi/2}.
$$

Final Result

$$
\boxed{\displaystyle I=e^{\pi/2}}
$$

Download concise; exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.25 : Evaluate the integral
$$\displaystyle \int_{0}^{\pi/4}\frac{\sin x\;\cos x}{\cos^{4}x+\sin^{4}x}\;dx$$

Solution

$$\displaystyle \int_{0}^{\pi/4}\frac{\sin x\;\cos x}{\cos^{4}x+\sin^{4}x}\;dx$$

Divide numerator and denominator by $\cos^{4}x$ to rewrite the integrand in terms of $\tan x$ and $\sec x$:
$$
\frac{\sin x\;\cos x}{\cos^{4}x+\sin^{4}x}
=\frac{\tan x\;\cos^{2}x}{\cos^{4}x(1+\tan^{4}x)}
=\frac{\tan x\;\sec^{2}x}{1+\tan^{4}x}.
$$

Put
$$
u=\tan^{2}x\qquad\Rightarrow\qquad du=2\tan x\;\sec^{2}x\;dx,
$$
so
$$
\tan x\;\sec^{2}x\;dx=\frac{1}{2}\;du,
\qquad
1+\tan^{4}x=1+u^{2}.
$$

Thus the integral becomes
$$
\int_{0}^{\pi/4}\frac{\tan x\;\sec^{2}x}{1+\tan^{4}x}\;dx
=\frac{1}{2}\int_{u(0)}^{u(\pi/4)}\frac{du}{1+u^{2}}
=\frac{1}{2}\int_{0}^{1}\frac{du}{1+u^{2}}.
$$

Evaluate:
$$
\frac{1}{2}\bigl[\tan^{-1}u\bigr]_{0}^{1}
=\frac{1}{2}\left(\frac{\pi}{4}-0\right)
=\frac{\pi}{8}.
$$

Final Result

$$
\boxed{\displaystyle \frac{\pi}{8}}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.26 : Evaluate the integral
$$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{2}x}{\cos^{2}x+4\sin^{2}x}\;dx$$

Solution

Let
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{2}x}{\cos^{2}x+4\sin^{2}x}\;dx.$$

Use $\sin^{2}x=1-\cos^{2}x$ to rewrite the denominator:
$$\cos^{2}x+4\sin^{2}x=\cos^{2}x+4(1-\cos^{2}x)=4-3\cos^{2}x.$$

Thus
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{2}x}{4-3\cos^{2}x}\;dx.$$

Write the integrand as
$$\frac{\cos^{2}x}{4-3\cos^{2}x}
=\frac{1}{-3}\cdot\frac{4-3\cos^{2}x-4}{4-3\cos^{2}x}$$

$$\frac{\cos^{2}x}{4-3\cos^{2}x}=-\frac{1}{3}\cdot\frac{4-3\cos^{2}x}{4-3\cos^{2}x}+\frac{1}{3}\cdot\frac{4}{4-3\cos^{2}x}.$$

So
$$I=-\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}1\;dx+\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{4}{4-3\cos^{2}x}\;dx.$$

The first integral is straightforward:
$$-\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}1\;dx=-\frac{1}{3}\left[x\right]_{0}^{\frac{\pi}{2}}=-\frac{\pi}{6}.$$

For the second integral, express in terms of $\tan x$ and $\sec^{2}x$:
$$\frac{4}{4-3\cos^{2}x}=\frac{4\sec^{2}x}{4\sec^{2}x-3}.$$

Thus
$$\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{4}{4-3\cos^{2}x}\;dx=\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{4\sec^{2}x}{4\sec^{2}x-3}\;dx.$$

Factor $4\sec^{2}x$ in numerator and use $\sec^{2}x=1+\tan^{2}x$:
$$\frac{4\sec^{2}x}{4\sec^{2}x-3}=\frac{4\sec^{2}x}{4(1+\tan^{2}x)-3}=\frac{4\sec^{2}x}{1+4\tan^{2}x}.$$

So
$$\frac{1}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{4\sec^{2}x}{4\sec^{2}x-3}\;dx=\frac{4}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{\sec^{2}x}{1+4\tan^{2}x}\;dx.$$

Make the substitution $t=2\tan x\;\Rightarrow\;dt=2\sec^{2}x\;dx$, so $\sec^{2}x\;dx=\dfrac{dt}{2}$. When $x=0$, $t=0$, when $x=\dfrac{\pi}{2}$, $t\to\infty$. Therefore
$$\frac{4}{3}\int_{0}^{\dfrac{\pi}{2}}\frac{\sec^{2}x}{1+4\tan^{2}x}\;dx
=\frac{4}{3}\int_{0}^{\infty}\frac{1}{2}\cdot\frac{dt}{1+t^{2}}
=\frac{2}{3}\int_{0}^{\infty}\frac{dt}{1+t^{2}}.$$

Evaluate the arctangent integral:
$$\frac{2}{3}\int_{0}^{\infty}\frac{dt}{1+t^{2}}=\frac{2}{3}\left[\tan^{-1}t\right]_{0}^{\infty}=\frac{2}{3}\cdot\frac{\pi}{2}=\frac{\pi}{3}.$$

Combine both parts:
$$I=-\frac{\pi}{6}+\frac{\pi}{3}=\frac{\pi}{6}.$$

Final Result

$$\boxed{\;I=\dfrac{\pi}{6}\;}$$


NCERT Question.27 : Evaluate the integral
$$\displaystyle I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sin x+\cos x}{\sqrt{\sin2x}}\;dx$$

Solution
$$\displaystyle I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sin x+\cos x}{\sqrt{\sin2x}}\;dx$$

Use the substitution
$$t=\sin x-\cos x\quad\Rightarrow\quad dt=(\cos x+\sin x)\;dx.$$
Also note
$$(\sin x-\cos x)^{2}=1-\sin2x\quad\Rightarrow\quad \sin2x=1-t^{2}.$$
Hence the integrand becomes
$$\frac{\sin x+\cos x}{\sqrt{\sin2x}}\;dx=\frac{dt}{\sqrt{1-t^{2}}}.$$

Compute the limits. When $x=\dfrac{\pi}{6}$,
$$t=\sin\frac{\pi}{6}-\cos\frac{\pi}{6}=\frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{1-\sqrt{3}}{2}=-\frac{\sqrt{3}-1}{2}.$$
When $x=\dfrac{\pi}{3}$,
$$t=\sin\frac{\pi}{3}-\cos\frac{\pi}{3}=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}.$$

Therefore
$$I=\int_{-\frac{\sqrt{3}-1}{2}}^{\frac{\sqrt{3}-1}{2}}\frac{dt}{\sqrt{1-t^{2}}}
=\left[\sin^{-1}t\right]_{-\frac{\sqrt{3}-1}{2}}^{\frac{\sqrt{3}-1}{2}}$$

$$I =\sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right)-\sin^{-1}\left(-\frac{\sqrt{3}-1}{2}\right).$$

Since $\sin^{-1}(-a)=-\sin^{-1}(a)$, this simplifies to
$$I=2\sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right).$$

Final Result

$$\boxed{\;I=2\sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right)\;}$$

Find more clear, worked integration problems and step-by-step solutions from Anand Classes โ€” ideal for JEE and CBSE practice and reliable study material.


NCERT Question.28 : Evaluate the integral
$$I=\int_{0}^{1}\frac{dx}{\sqrt{1+x}-\sqrt{x}}$$

Solution

$$I=\int_{0}^{1}\frac{dx}{\sqrt{1+x}-\sqrt{x}}$$

Multiply by the conjugate of the denominator:
$$
\frac{1}{\sqrt{1+x}-\sqrt{x}}
=\frac{\sqrt{1+x}+\sqrt{x}}{(\sqrt{1+x}-\sqrt{x})(\sqrt{1+x}+\sqrt{x})}
=\sqrt{1+x}+\sqrt{x}.
$$

Hence
$$
I=\int_{0}^{1}\big(\sqrt{1+x}+\sqrt{x}\big)\;dx
=\int_{0}^{1}(1+x)^{\tfrac{1}{2}}\;dx+\int_{0}^{1}x^{\tfrac{1}{2}}\;dx.
$$

Evaluate each integral:
$$
\int(1+x)^{\tfrac{1}{2}}\;dx=\frac{2}{3}(1+x)^{\tfrac{3}{2}},\qquad
\int x^{\tfrac{1}{2}}\;dx=\frac{2}{3}x^{\tfrac{3}{2}}.
$$

So
$$
I=\frac{2}{3}\big[(1+x)^{\tfrac{3}{2}}\big]_{0}^{1}+\frac{2}{3}\big[x^{\tfrac{3}{2}}\big]_{0}^{1}
=\frac{2}{3}\big(2^{\tfrac{3}{2}}-1\big)+\frac{2}{3}\big(1-0\big)
=\frac{2}{3}\cdot 2^{\tfrac{3}{2}}.
$$

Since $2^{\tfrac{3}{2}}=2\sqrt{2}$, we get

Final Result

$$\boxed{I=\dfrac{4\sqrt{2}}{3}}$$

Download more worked integration problems by Anand Classes โ€” perfect for JEE and CBSE practice and top-quality study material.


NCERT Question.29 : Evaluate the integral
$$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}\frac{\sin x+\cos x}{9+16\sin2x}\;dx$$

Solution

$$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}\frac{\sin x+\cos x}{9+16\sin2x}\;dx$$

Let
$$t=\sin x-\cos x\quad\Rightarrow\quad dt=(\cos x+\sin x)\;dx.$$

Use the identity
$$(\sin x-\cos x)^{2}=\sin^{2}x+\cos^{2}x-2\sin x\cos x=1-\sin2x$$

$$\sin2x=1-t^{2}.$$

Under this substitution the limits become
$$x=0\Rightarrow t=\sin0-\cos0=0-1=-1, $$

$$x=\frac{\pi}{4}\Rightarrow t=\sin\frac{\pi}{4}-\cos\frac{\pi}{4}=0$$

Thus the integral transforms to
$$I=\int_{-1}^{0}\frac{dt}{9+16(1-t^{2})}
=\int_{-1}^{0}\frac{dt}{25-16t^{2}}.$$

Write $25-16t^{2}=5^{2}-(4t)^{2}$.

The antiderivative for $\dfrac{1}{a^{2}-b^{2}t^{2}}$ is $\dfrac{1}{2ab}\ln\dfrac{a+bt}{a-bt}$.

Therefore
$$\int\frac{dt}{25-16t^{2}}
=\frac{1}{2\cdot5\cdot4}\ln\frac{5+4t}{5-4t}
=\frac{1}{40}\ln\frac{5+4t}{5-4t}.$$

Evaluate from $t=-1$ to $t=0$:
$$
I=\frac{1}{40}\left[\ln\frac{5+4t}{5-4t}\right]_{-1}^{0}
=\frac{1}{40}\left(\ln\frac{5+0}{5-0}-\ln\frac{5-4}{5+4}\right)$$

$$I=\frac{1}{40}\left(0-\ln\frac{1}{9}\right)=\frac{1}{40}\ln 9$$

Final Result

$$\boxed{\;I=\dfrac{1}{40}\ln 9\;}$$

Find more worked integrals and clear step-by-step solutions from Anand Classes โ€” perfect for JEE and CBSE practice and reliable, top-quality study material.


NCERT Question.30 : Evaluate the integral
$$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}}\sin2x \;\tan^{-1}(\sin x)\;dx$$

Solution

$$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}}\sin2x \;\tan^{-1}(\sin x)\;dx$$

Let $t=\sin x\Rightarrow dt=\cos x\;dx$. Note $\sin2x=2\sin x\cos x$. Therefore
$$
I=\int_{0}^{\dfrac{\pi}{2}}2\sin x\cos x\;\tan^{-1}(\sin x)\;dx
=2\int_{0}^{1}t\;\tan^{-1}t\;dt.
$$

Compute $ \displaystyle \int t\;\tan^{-1}t\;dt $ by integration by parts. Take
$u=\tan^{-1}t\Rightarrow du=\dfrac{dt}{1+t^{2}}$ and $dv=t\;dt\Rightarrow v=\dfrac{t^{2}}{2}$. Then
$$
\int t\;\tan^{-1}t\;dt=\frac{t^{2}}{2}\tan^{-1}t-\int\frac{t^{2}}{2(1+t^{2})}\;dt.
$$

Write $\dfrac{t^{2}}{1+t^{2}}=1-\dfrac{1}{1+t^{2}}$ to get
$$
\int t\;\tan^{-1}t\;dt=\frac{t^{2}}{2}\tan^{-1}t-\frac{1}{2}\int\Big(1-\frac{1}{1+t^{2}}\Big)\;dt$$

$$\int t\;\tan^{-1}t\;dt=\frac{t^{2}}{2}\tan^{-1}t-\frac{1}{2}\Big(t-\tan^{-1}t\Big)$$

Simplify:
$$
\int t\;\tan^{-1}t\;dt=\frac{1}{2}(t^{2}+1)\tan^{-1}t-\frac{t}{2}.
$$

Evaluate from $0$ to $1$:
$$
\int_{0}^{1}t\;\tan^{-1}t\;dt=\left[\frac{1}{2}(t^{2}+1)\tan^{-1}t-\frac{t}{2}\right]_{0}^{1}
=\frac{1}{2}\cdot 2\cdot\frac{\pi}{4}-\frac{1}{2}
=\frac{\pi}{4}-\frac{1}{2}.
$$

Thus
$$
I=2\Big(\frac{\pi}{4}-\frac{1}{2}\Big)=\frac{\pi}{2}-1.
$$

Final Result

$$\boxed{\;I=\dfrac{\pi}{2}-1\; }$$

Download complete practice sets and step-by-step integration guides from Anand Classes โ€” perfect for JEE and CBSE revision and reliable, top-quality study material.

NCERT Solutions Miscellaneous Exercise (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS