Anand Classes offers detailed NCERT Solutions for Integrals Exercise 7.8 of Chapter 7 for Class 12 Mathematics, providing students with clear explanations and step-by-step methods to master complex integration problems. These Set-1 notes strictly follow the latest NCERT guidelines and are designed to support effective revision, concept clarity, and strong exam preparation. Click the print button to download study material and notes.
NCERT Question 1: Evaluate the integral
$$\int_{-1}^{1}(x+1)\;dx$$
Solution
Let
$$I=\int_{-1}^{1}(x+1)\;dx$$
First find the antiderivative:
$$\int(x+1)\;dx=\frac{x^{2}}{2}+x$$
Apply the Second Fundamental Theorem of Calculus:
$$I=\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}$$
Substitute the limits:
$$I=\left(\frac{1^{2}}{2}+1\right)-\left(\frac{(-1)^{2}}{2}-1\right)$$
Simplify:
$$I=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)$$
$$I=\frac{1}{2}+1-\frac{1}{2}+1$$
$$I=2$$
Final Answer
$$\boxed{2}$$
Discover more expertly formatted solutions and step-by-step explanations with Anand Classes โ perfect for strengthening calculus concepts and ideal for CBSE and JEE preparation.
NCERT Question 2: Evaluate the integral
$$\int_{2}^{3}\frac{1}{x}\;dx$$
Solution
Let
$$I=\int_{2}^{3}\frac{1}{x}\;dx$$
The antiderivative is
$$\int\frac{1}{x}\;dx=\log\lvert x\rvert$$
Apply the Second Fundamental Theorem of Calculus:
$$I=\left[\log\lvert x\rvert\right]_{2}^{3}$$
Substitute the limits:
$$I=\log 3-\log 2$$
Using log properties:
$$I=\log\left(\frac{3}{2}\right)$$
Final Answer
$$\boxed{\log\left(\frac{3}{2}\right)}$$
Enhance your understanding of definite integrals with expertly structured solutions from Anand Classes โ ideal for CBSE, JEE preparation, and quick concept revision.
NCERT Question 3: Evaluate the integral
$$\int_{1}^{2}\left(4x^{3}-5x^{2}+6x+9\right)\;dx$$
Solution
Let
$$I=\int_{1}^{2}\left(4x^{3}-5x^{2}+6x+9\right)\;dx$$
Find the antiderivative:
$$\int\left(4x^{3}-5x^{2}+6x+9\right)\;dx
= x^{4}-\frac{5x^{3}}{3}+3x^{2}+9x$$
Thus,
$$I=\left[x^{4}-\frac{5x^{3}}{3}+3x^{2}+9x\right]_{1}^{2}$$
Substitute upper limit:
$$2^{4}-\frac{5(2^{3})}{3}+3(2^{2})+9(2)
=16-\frac{40}{3}+12+18$$
Substitute lower limit:
$$1^{4}-\frac{5(1^{3})}{3}+3(1^{2})+9(1)
=1-\frac{5}{3}+3+9$$
Now compute the difference:
$$I=\left(16-\frac{40}{3}+12+18\right)-\left(1-\frac{5}{3}+3+9\right)$$
Simplify:
$$I=33-\frac{35}{3}$$
Write with a common denominator:
$$I=\frac{99-35}{3}$$
$$I=\frac{64}{3}$$
Final Answer
$$\boxed{\frac{64}{3}}$$
Strengthen your integral calculus skills with detailed solutions from Anand Classes โ perfect for CBSE boards, JEE aspirants, and students seeking clear step-by-step guidance.
NCERT Question 4: Evaluate the integral
$$\int_{0}^{\dfrac{\pi}{4}} \sin 2x\;dx$$
Solution
Let
$$I=\int_{0}^{\dfrac{\pi}{4}}\sin 2x\;dx$$
Find the antiderivative:
$$\int \sin 2x\;dx = -\frac{\cos 2x}{2}$$
Thus,
$$I=\left[-\frac{\cos 2x}{2}\right]_{0}^{\dfrac{\pi}{4}}$$
Substitute the limits:
$$I=-\frac{1}{2}\left[\cos\left(2\cdot\frac{\pi}{4}\right)-\cos(0)\right]$$
Simplify inside the bracket:
$$I=-\frac{1}{2}\left[\cos\left(\frac{\pi}{2}\right)-\cos(0)\right]$$
Since
$$\cos\left(\frac{\pi}{2}\right)=0 \quad\text{and}\quad \cos(0)=1,$$
we get
$$I=-\frac{1}{2}(0-1)=\frac{1}{2}$$
Final Answer
$$\boxed{\frac{1}{2}}$$
Master definite integrals effortlessly with structured step-by-step solutions from Anand Classes โ ideal for strengthening CBSE and JEE preparation.
NCERT Question 5: Evaluate the integral
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \cos 2x\;dx$$
Solution
Antiderivative:
$$\int \cos 2x\;dx = \frac{1}{2}\sin 2x$$
Evaluate from $0$ to $\dfrac{\pi}{2}$:
$$\displaystyle I=\left[\frac{1}{2}\sin 2x\right]_{0}^{\dfrac{\pi}{2}}
=\frac{1}{2}\bigl(\sin\pi-\sin 0\bigr)$$
Since $\sin\pi=0$ and $\sin 0=0$,
$$I=\frac{1}{2}(0-0)=0$$
Final Answer
$$\boxed{0}$$
NCERT Question 6: Evaluate the integral
$$\displaystyle \int_{4}^{5} e^{x}\;dx$$
Solution
Antiderivative:
$$\int e^{x}\;dx = e^{x}$$
Evaluate from $4$ to $5$:
$$\displaystyle I=\bigl[e^{x}\bigr]_{4}^{5}=e^{5}-e^{4} = e^{4}(e-1)$$
Final Answer
$$\boxed{e^{5}-e^{4}=e^{4}(e-1)}$$
NCERT Question 7: Evaluate the integral
$$\displaystyle \int_{0}^{\dfrac{\pi}{4}} \tan x\;dx$$
Solution
Antiderivative:
$$\int \tan x\;dx = -\ln\lvert\cos x\rvert$$
Evaluate from $0$ to $\dfrac{\pi}{4}$:
$$\displaystyle I=\left[-\ln\lvert\cos x\rvert\right]_{0}^{\frac{\pi}{4}}
=-\ln\bigl(\cos\frac{\pi}{4}\bigr)+\ln\bigl(\cos 0\bigr)$$
Now $\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}$ and $\cos 0=1$, so
$$I=-\ln\left(\frac{1}{\sqrt{2}}\right)+\ln 1
=-\bigl(-\frac{1}{2}\ln 2\bigr)+0=\frac{1}{2}\ln 2$$
Final Answer
$$\boxed{\frac{1}{2}\ln 2}$$
NCERT Question 8: Evaluate the integral
$$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x\;dx$$
Solution
Antiderivative:
$$\int \csc x\;dx = \ln!\bigl|\csc x-\cot x\bigr| + C$$
Evaluate from $\tfrac{\pi}{6}$ to $\tfrac{\pi}{4}$:
$$\displaystyle I=\left[\ln!\bigl|\csc x-\cot x\bigr|\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}
=\ln!\bigl(\csc\tfrac{\pi}{4}-\cot\tfrac{\pi}{4}\bigr)
-\ln!\bigl(\csc\tfrac{\pi}{6}-\cot\tfrac{\pi}{6}\bigr)$$
Compute values:
$$\csc\tfrac{\pi}{4}=\sqrt{2},\quad \cot\tfrac{\pi}{4}=1\quad\Rightarrow\quad \csc\tfrac{\pi}{4}-\cot\tfrac{\pi}{4}=\sqrt{2}-1$$
$$\csc\tfrac{\pi}{6}=2,\quad \cot\tfrac{\pi}{6}=\sqrt{3}\quad\Rightarrow\quad \csc\tfrac{\pi}{6}-\cot\tfrac{\pi}{6}=2-\sqrt{3}$$
So
$$\displaystyle I=\ln\frac{\sqrt{2}-1}{2-\sqrt{3}}$$
(you may leave it as above or combine into a single logarithm)
Final Answer
$$\boxed{\displaystyle \ln\frac{\sqrt{2}-1}{2-\sqrt{3}}}$$
Improve your NCERT practice with neatly typeset worked solutions and downloadable notes from Anand Classes โ perfect for fast revision before CBSE and JEE exams.
NCERT Question 9: Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}$$
Solution
An antiderivative of the integrand is the inverse sine function:
$$\int \frac{dx}{\sqrt{1-x^{2}}}=\sin^{-1}x + C.$$
Apply the limits $0$ to $1$:
$$\displaystyle I=\left[\sin^{-1}x\right]_{0}^{1}=\sin^{-1}(1)-\sin^{-1}(0).$$
Evaluate the values:
$$\sin^{-1}(1)=\frac{\pi}{2},\qquad \sin^{-1}(0)=0.$$
So
$$\displaystyle I=\frac{\pi}{2}-0=\frac{\pi}{2}.$$
Final Answer
$$\boxed{\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}}$$
Download neatly formatted, exam-ready notes by Anand Classes โ perfect for CBSE revision and JEE practice.
NCERT Question 10: Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{1+x^{2}}$$
Solution
An antiderivative is
$$\int\frac{dx}{1+x^{2}}=\tan^{-1}x + C.$$
Apply the limits:
$$\left[\tan^{-1}x\right]_{0}^{1}=\tan^{-1}(1)-\tan^{-1}(0)=\frac{\pi}{4}-0=\frac{\pi}{4}.$$
Final Answer
$$\boxed{\displaystyle \frac{\pi}{4}}$$
NCERT Question 11: Evaluate the integral
$$\displaystyle \int_{2}^{3}\frac{dx}{x^{2}-1}$$
Solution
An antiderivative is
$$\int\frac{dx}{x^{2}-1}=\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|+C.$$
Evaluate from $2$ to $3$:
$$\frac{1}{2}\ln\left|\frac{3-1}{3+1}\right|
-\frac{1}{2}\ln\left|\frac{2-1}{2+1}\right|
=\frac{1}{2}\ln\frac{2/4}{1/3}
=\frac{1}{2}\ln\frac{3}{2}.$$
Final Answer
$$\boxed{\displaystyle \frac{1}{2}\ln\left(\frac{3}{2}\right)}$$
Strengthen your NCERT practice with neatly typeset solutions and more worked examples from Anand Classes โ downloadable notes and step-by-step explanations ideal for CBSE and JEE revision.

