Anand Classes offers well-organized NCERT Solutions for Integrals Exercise 7.10 of Chapter 7 for Class 12 Mathematics, designed to help students easily understand complex integration concepts with step-by-step solutions. This Set-2 PDF includes solved examples, concept explanations, and exam-focused notes based on the latest NCERT curriculum, making it ideal for revision and board exam preparation. Click the print button to download study material and notes.
NCERT Question.11 : Evaluate the integral
$$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^{2}x\;dx$$
Solution
$$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^{2}x\;dx$$
Recognize symmetry.
Since $\sin^{2}x$ is an even function,
$$\sin^{2}(-x)=\sin^{2}x,$$
so
$$I=2\int_{0}^{\frac{\pi}{2}}\sin^{2}x\;dx.$$
Use the identity
$$\sin^{2}x=\frac{1-\cos2x}{2}.$$
Thus,
$$I=2\int_{0}^{\frac{\pi}{2}}\frac{1-\cos2x}{2}\;dx
=\int_{0}^{\frac{\pi}{2}}\bigl(1-\cos2x\bigr)\;dx.$$
Integrate termwise:
$$
I =\int_{0}^{\frac{\pi}{2}}1\;dx-\int_{0}^{\frac{\pi}{2}}\cos2x\;dx $$
$$=\Big[x\Big]_{0}^{\frac{\pi}{2}}-\Big[\tfrac{1}{2}\sin2x\Big]_{0}^{\frac{\pi}{2}}$$
$$=\frac{\pi}{2}-\tfrac{1}{2}(\sin\pi-\sin0)$$
$$=\frac{\pi}{2}-0.$$
Final Result
$$\boxed{\;I=\frac{\pi}{2}\;}$$
High-quality, exam-oriented solutions by Anand Classes, designed to build confidence for CBSE and JEE calculus practice.
NCERT Question.12 : Evaluate the integral
$$I=\int_{0}^{\pi}\frac{x}{1+\sin x}\;dx$$
Solution :
Let
$$I=\int_{0}^{\pi}\frac{x}{1+\sin x}\;dx$$
Step 1: Use the property
using the integration property
$$I = \int_0^{\pi} f(x)dx = \int_0^{\pi} f(\pi – x)dx$$
Apply the substitution
$$
x \;\to\; \pi – x.
$$
Then
$$
I=\int_{0}^{\pi}\frac{\pi – x}{1+\sin(\pi – x)}\;dx
$$
But
$$
\sin(\pi – x)=\sin x\;
$$
so
$$
I=\int_{0}^{\pi}\frac{\pi – x}{1+\sin x}\;dx
$$
Step 2: Add the two integrals
$$
2I=\int_{0}^{\pi}\frac{x}{1+\sin x}\;dx + \int_{0}^{\pi}\frac{\pi – x}{1+\sin x}\;dx
$$
$$
2I=\int_{0}^{\pi}\frac{\pi}{1+\sin x}\;dx
$$
$$
2I=\pi\int_{0}^{\pi}\frac{dx}{1+\sin x}
$$
Let
$$
J=\int_{0}^{\pi}\frac{dx}{1+\sin x}.
$$
Then
$$
2I=\pi J.
$$
Step 3: Evaluate
$$ J=\int_{0}^{\pi}\frac{dx}{1+\sin x}.$$
Use the substitution
$$
t=\tan\frac{x}{2}\; =>\qquad x=2\tan^{-1} t
$$
$$
\sin x = \frac{2t}{1+t^2}\; =>\qquad dx=\frac{2\;dt}{1+t^2}
$$
Then
$$
J=\int_{0}^{\infty}\frac{1+t^2}{1+t^2+2t}\cdot \frac{2\;dt}{1+t^2}
$$
$$
J=\int_{0}^{\infty}\frac{2\;dt}{(t+1)^2}
$$
$$
J=2\int_{0}^{\infty}\frac{dt}{(t+1)^2}
$$
$$
J=2\left[\frac{-1}{t+1}\right]_{0}^{\infty}
$$
$$
J=2(0 – (-1)) = 2
$$
Thus
$$
J=2.
$$
Step 4: Final value
$$
2I=\pi J = \pi \cdot 2 = 2\pi
$$
$$
I=\pi
$$
Final Answer
$$\boxed{\;\pi\;}$$
NCERT Question.13 : Evaluate the integral
$$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^{7}x\;dx$$
Solution
$$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^{7}x\;dx$$
Observation โ parity of the integrand.
The sine function is odd: $\sin(-x)=-\sin x$. An odd power of an odd function is odd, so
$$\sin^{7}(-x)=\big(\sin(-x)\big)^{7}=(-\sin x)^{7}=-\sin^{7}x.$$
Thus $\sin^{7}x$ is an odd function.
Key property (symmetry).
The integral of an odd function over symmetric limits $[-a,a]$ is zero:
$$\int_{-a}^{a} \text{(odd function)}dx=0.$$
Apply this with $a=\dfrac{\pi}{2}$:
$$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^{7}x\;dx=0.$$
Final Result
$$\boxed{\;I=0\;}$$
Download succinct solved integrals by Anand Classes โ perfect for quick CBSE and JEE revision, with clear symmetry tricks and step-by-step methods for fast practice.
NCERT Question.13 : Evaluate the integral
$$I=\int_{0}^{2\pi}\cos^{5}x\;dx$$
Solution :
use the odd-power cosine identity:
$$\cos^{5}x=\cos^{4}x\cos x=(\cos^{2}x)^2\cos x=(1-\sin^{2}x)^{2}\cos x.$$
Let
$$
t=\sin x \quad\Rightarrow\quad dt=\cos x\;dx.
$$
Also note how $(t=\sin x)$ changes over one full period:
- When $(x=0):โ(t=0)$
- When $(x=\pi):โ(t=0)$
- When $(x=2\pi): (t=0)$
Because $(\sin x)$ rises from $(0\to 1\to 0)$ on $([0,\pi])$ and then goes $(0\to -1\to 0)$ on $([\pi,2\pi])$, the substitution must be split:
$$
I=\int_{0}^{\pi}(1-\sin^{2}x)^{2}\cos x\;dx+\int_{\pi}^{2\pi}(1-\sin^{2}x)^{2}\cos x\;dx.
$$
Apply the substitution separately:
- For $(0\to \pi)$:โ$(t:0\to 0)$ but the path goes up to $(1)$ and back, so it becomes
$$
\int_{0}^{1}(1-t^{2})^{2}\;dt+\int_{1}^{0}(1-t^{2})^{2}\;dt
$$
which cancel each other. - For $(\pi\to2\pi)$:โ$(t:0\to -1\to 0)$, giving
$$
\int_{0}^{-1}(1-t^{2})^{2}\;dt+\int_{-1}^{0}(1-t^{2})^{2}\;dt,
$$
which again cancel.
So the total integral is
$$
I=0.
$$
Final Answer
$$
\boxed{0}
$$
Reason: $(\cos^{5}x)$ is an odd function of $(\sin x)$ over a full $(0)$ to $(2\pi)$ cycle, giving net area $(0)$.
NCERT Question 15: Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos x-\sin x}{1+\sin x\cos x}\;dx$$
Solution
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos x-\sin x}{1+\sin x\cos x}\;dx$$
Use the symmetry property $\displaystyle\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$ with $a=\dfrac{\pi}{2}$.
Compute the integrand at $\dfrac{\pi}{2}-x$:
$$
f\left(\frac{\pi}{2}-x\right)
=\frac{\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)}{1+\sin\left(\frac{\pi}{2}-x\right)\cos\left(\frac{\pi}{2}-x\right)}$$
$$f\left(\frac{\pi}{2}-x\right)=\frac{\sin x-\cos x}{1+\sin x\cos x}=-\frac{\cos x-\sin x}{1+\sin x\cos x}$$
$$f\left(\frac{\pi}{2}-x\right)=-f(x).$$
Thus $f\left(\dfrac{\pi}{2}-x\right)=-f(x)$, so the integrand is odd on the symmetric interval $[0\;\dfrac{\pi}{2}]$.
When an integrand satisfies $f(a-x)=-f(x)$ on $[0\;a]$ the definite integral over $[0\;a]$ is $0$. Therefore
$$I=0.$$
Final Result
$$\boxed{\;I=0\;}$$
Concise exam-ready solutions from Anand Classes โ clear symmetry tricks and step-by-step methods perfect for CBSE and JEE revision great for quick practice and downloadable notes.
NCERT Question 16: Prove that
$$
I=\int_{0}^{\dfrac{\pi}{2}}\ln(\sin x)dx =-\frac{\pi}{2}\ln2\
$$
Solution :
Let
$$
I=\int_{0}^{\dfrac{\pi}{2}}\ln(\sin x)dx.
$$
Using the identity $(\sin x\cos x=\tfrac12\sin2x)$ we get
$$
\ln(\sin x)+\ln(\cos x)=\ln\Big(\frac{1}{2}\Big)+\ln(\sin2x).
$$
Integrate both sides from $(0)$ to $(\dfrac{\pi}{2})$. The left side gives
$$
\int_{0}^{\frac{\pi}{2}}\ln(\sin x)dx+\int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx=I+I=2I.
$$
The right side gives
$$
\int_{0}^{\frac{\pi}{2}}\ln\Big(\tfrac{1}{2}\Big)dx+\int_{0}^{\frac{\pi}{2}}\ln(\sin2x)dx
=\frac{\pi}{2}\ln\Big(\tfrac{1}{2}\Big)+\int_{0}^{\frac{\pi}{2}}\ln(\sin2x)dx.
$$
Evaluate the last integral by the substitution $(t=2x)$ :
$$
\int_{0}^{\frac{\pi}{2}}\ln(\sin2x)dx=\frac{1}{2}\int_{0}^{\pi}\ln(\sin t)dt
=\frac{1}{2}\cdot 2\int_{0}^{\frac{\pi}{2}}\ln(\sin t)dt=\frac{1}{2}\cdot 2I=I.
$$
So the right side equals $(\dfrac{\pi}{2}\ln\big(\tfrac{1}{2}\big)+I)$. Therefore
$$ 2I=\frac{\pi}{2}\ln\Big(\tfrac{1}{2}\Big)+I. $$
$$I=\frac{\pi}{2}\ln\Big(\tfrac{1}{2}\Big)= -\frac{\pi}{2}\ln 2$$
Final Result
$$\boxed{\; \displaystyle \int_{0}^{\frac{\pi}{2}}\ln(\sin x)dx=-\frac{\pi}{2}\ln 2\; }$$
Similarly :
$$\boxed{\; \displaystyle \int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx=-\frac{\pi}{2}\ln 2\;}$$
For more concise, rigorously worked integrals and downloadable notes, check out the clear step-by-step material from Anand Classes โ ideal for fast CBSE and JEE revision.
NCERT Question No.16 : Evaluate the integral
$$\int_{0}^{\pi}\log(1+\cos x)\;dx$$
Solution
$$\int_{0}^{\pi}\log(1+\cos x)\;dx$$
Use the identity
$$1+\cos x=2\cos^2\frac{x}{2}.$$
So,
$$
\log(1+\cos x)
=\log\left(2\cos^2\frac{x}{2}\right)
=\log 2+2\log\left(\cos\frac{x}{2}\right).
$$
Thus the integral becomes
$$
I=\int_{0}^{\pi}\left(\log 2+2\log\left(\cos\frac{x}{2}\right)\right)dx.
$$
Split it:
$$
I=\log 2\int_{0}^{\pi}dx+2\int_{0}^{\pi}\log\left(\cos\frac{x}{2}\right)dx.
$$
Compute each part:
$$
\int_{0}^{\pi}dx=\pi.
$$
- Substitute $(x=2t)\;$ so $(dx=2dt)\;$ limits $(x=0\to t=0)\; (x=\pi\to t=\frac{\pi}{2})$ :
$$
\int_0^\pi \log\left(\cos\frac{x}{2}\right)dx
=\int_0^{\frac{\pi}{2}}2\log(\cos t)\;dt
=2\int_0^{\frac{\pi}{2}}\log(\cos t)\;dt.
$$
Use the standard result (already prove in above question) :
$$
\int_0^{\frac{\pi}{2}}\log(\cos t)\;dt=-\frac{\pi}{2}\log 2.
$$
Thus,
$$
\int_0^\pi \log\left(\cos\frac{x}{2}\right)dx
=2\left(-\frac{\pi}{2}\log 2\right)
=-\pi\log 2.
$$
Now substitute back:
$$
I=\pi\log 2+2(-\pi\log 2)
=-\pi\log 2.
$$
Final Result
$$
\boxed{\;I=-\pi\log 2\;}
$$
Get more fully solved integrals and classic identities with Anand Classes โ ideal for fast JEE and CBSE preparation with clear high-quality step-by-step solutions and revision notes.
NCERT Question No.17 : Evaluate the integral
$$I=\int_{0}^{a}\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\;dx.$$
Solution :
$$I=\int_{0}^{a}\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\;dx.$$
Step 1: Write the integral
$$I=\int_{0}^{a}\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\;dx \tag{1}$$
Step 2: Apply the property
Using
$$\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$$
replace $x$ by $(a-x)$:
$$I=\int_{0}^{a}\frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}\;dx \tag{2}$$
Step 3: Add (1) and (2)
$$
2I=\int_{0}^{a}\left(
\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}
+
\frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}
\right)\;dx.
$$
Simplify the integrand:
$$
\frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}=1.
$$
So,
$$2I=\int_{0}^{a}1\;dx=a.$$
Step 4: Final Result
$$\boxed{\;I=\dfrac{a}{2}\;}$$
High-quality solved examples like this one are part of the structured notes from Anand Classes, perfect for fast revision and competitive exam preparation, especially for JEE and CBSE students.
NCERT Question No.18 : Evaluate the integral
$$I=\int_{0}^{4}\lvert x-1\rvert\;dx.$$
Solution :
$$I=\int_{0}^{4}\lvert x-1\rvert\;dx.$$
Step 1: Remove the modulus
The expression inside the modulus is
- $ | x -1 | = -(x -1) = 1 – x : 0\le x<1$
- $| x -1 | = (x -1) : 1\le x\le 4$
So split the integral at $x=1$:
$$
I=\int_{0}^{1}(1-x)\;dx+\int_{1}^{4}(x-1)\;dx.
$$
Step 2: Evaluate each part
First integral
$$
\int_{0}^{1}(1-x)\;dx
=\left[x-\frac{x^{2}}{2}\right]_{0}^{1}
=1-\frac12=\frac12.
$$
Second integral
$$
\int_{1}^{4}(x-1)\;dx
=\left[\frac{x^{2}}{2}-x\right]_{1}^{4}
=\left(8-4\right)-\left(\frac12-1\right)
=4+\frac12
=\frac{9}{2}.
$$
Step 3: Add the results
$$
I=\frac12+\frac{9}{2}=5.
$$
Final Result
$$\boxed{5}$$
Clear stepwise solutions like this one are part of the concise revision material from Anand Classesโideal for CBSE and JEE students seeking fast, accurate problem-solving methods.
NCERT Question 19: Show that
$$\int_{0}^{a} f(x)\;g(x)\;dx=2\int_{0}^{a} f(x)\;dx$$
if $(f(x)=f(a-x))$ for all $(x\in[0\;a])$ and $(g(x)+g(a-x)=4)$ for all $(x\in[0\;a])$.
Solution
Let
$$I=\int_{0}^{a} f(x)\;g(x)\;dx.$$
Replace $(x)$ by $(a-x)$ and use $(dx\to -dx)$ (or perform the standard change of variable $(u=a-x))$ to get a second expression for (I):
$$
I=\int_{0}^{a} f(a-x)\;g(a-x)\;dx.
$$
Because $(f(a-x)=f(x))$ by hypothesis, this becomes
$$
I=\int_{0}^{a} f(x)\;g(a-x)\;dx.
$$
Add the two representations of (I):
$$
2I=\int_{0}^{a} f(x)\bigl(g(x)+g(a-x)\bigr)\;dx.
$$
Use the given relation $(g(x)+g(a-x)=4)$:
$$
2I=\int_{0}^{a} f(x)\cdot 4\;dx=4\int_{0}^{a} f(x)\;dx.
$$
Divide both sides by (2):
$$
I=2\int_{0}^{a} f(x)\;dx.
$$
Final Result
$$\boxed{\;\displaystyle \int_{0}^{a} f(x)\;g(x)\;dx=2\int_{0}^{a} f(x)\;dx\;}$$
Clear exam-ready proofs and solved examples from Anand Classes โ concise step-by-step explanations ideal for CBSE and JEE revision, perfect for strengthening symmetry-based integral techniques.
NCERT Question No.20 : The value of integral is
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\Bigl(x^{3}+x\cos x+\tan^{5}x+1\Bigr)\;dx$$
$ (A) 0 \qquad (B) 2 \qquad (C) ฯ \qquad (D) 1 $
Solution
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\Bigl(x^{3}+x\cos x+\tan^{5}x+1\Bigr)\;dx$$
All terms except the constant are odd functions:
- $x^{3}$ is odd
- $x\cos x$ is odd
- $\tan^{5}x$ is odd
For any odd function $f(x)$ on symmetric limits,
$$\int_{-a}^{a}f(x)\;dx=0.$$
Thus,
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^{3}\;dx=0,\qquad
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x\cos x\;dx=0,\qquad
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\tan^{5}x\;dx=0.$$
Only the constant term remains:
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1\;dx
=\Bigl[x\Bigr]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}
=\frac{\pi}{2}-\Bigl(-\frac{\pi}{2}\Bigr)=\pi.$$
Final Result
$$\boxed{\pi}$$
Strengthen your calculus practice with expertly formatted solutions and clear step-by-step reasoning โ perfect for competitive exams and revision, curated by Anand Classes.
NCERT Question 21: The value of integral is
$$I=\int_{0}^{\dfrac{\pi}{2}}\ln\left(\frac{4+3\sin x}{4+3\cos x}\right)\;dx$$
$ (A) 0 \qquad (B) 2 \qquad (C) ฯ \qquad (D) 1 $
Solution
$$I=\int_{0}^{\dfrac{\pi}{2}}\ln\left(\frac{4+3\sin x}{4+3\cos x}\right)\;dx$$
Write the integrand as a difference of logs:
$$I=\int_{0}^{\dfrac{\pi}{2}}\ln(4+3\sin x)dx-\int_{0}^{\dfrac{\pi}{2}}\ln(4+3\cos x)dx.$$
Use the substitution $x\to \dfrac{\pi}{2}-x$ in the second integral. Since $\cos x=\sin\big(\dfrac{\pi}{2}-x\big)$ and the substitution preserves the limits $0\to\dfrac{\pi}{2}$, we get
$$\int_{0}^{\dfrac{\pi}{2}}\ln(4+3\cos x)dx=\int_{0}^{\dfrac{\pi}{2}}\ln!\big(4+3\sin x\big)dx.$$
Therefore the two integrals are equal and cancel:
Final Result
$$\boxed{I=0}$$
High-quality solved integrals and concise step-by-step notes by Anand Classes โ perfect for CBSE and JEE revision, ideal for quick practice and strengthening problem-solving techniques.

