Applications of Integrals NCERT Solutions Exercise 8.1 Chapter-8 Class 12 Math Notes PDF Free Download

โญโญโญโญโญ (5/5 from 72919 reviews)

NCERT Question.1 : Find the area of the region bounded by the ellipse
$$ \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$

Solution :
Equation of ellipse is :

$$ \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$

Ncert question. 1 : find the area of the region bounded by the ellipse
$$ \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$
NCERT Question.1 : Find the area of the region bounded by the ellipse
$$ \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$

Use area as area under curve (quarter-area method). Solve for the upper half of the ellipse:
$$y=b\sqrt{1-\frac{x^{2}}{a^{2}}}\qquad a=4, b=3$$

Area of the whole ellipse = four times the area in the first quadrant (say OAB):
$$
\text{Area}=4\int_{0}^{a} y\;dx
=4\int_{0}^{4} 3\sqrt{1-\frac{x^{2}}{16}}\;dx
=12\int_{0}^{4}\sqrt{1-\frac{x^{2}}{16}}\;dx.
$$

Use the substitution $x=a\sin\theta=4\sin\theta$, so $dx=4\cos\theta\;d\theta$. When $x=0\Rightarrow\theta=0$, and $x=4\Rightarrow\theta=\dfrac{\pi}{2}$. Then
$$\text{Area}
=12\int_{0}^{\dfrac{\pi}{2}}\sqrt{1-\sin^{2}\theta}(4\cos\theta)\;d\theta =12\int_{0}^{\dfrac{\pi}{2}}( \cos\theta)(4\cos\theta)\;d\theta$$

$$\text{Area}=48\int_{0}^{\dfrac{\pi}{2}}\cos^{2}\theta\;d\theta
=48\cdot\frac{1}{2}\int_{0}^{\dfrac{\pi}{2}}(1+\cos 2\theta)\;d\theta$$

$$\text{Area}=24\left[\theta+\tfrac{1}{2}\sin 2\theta\right]_{0}^{\frac{\pi}{2}}
=24\left(\frac{\pi}{2}+0\right)
=12\pi.
$$

$$
\boxed{\;\text{Area}=12\pi\;\text{square units}\;}
$$

Download notes by Anand Classes โ€” perfect for JEE and CBSE practice and clear step-by-step integral methods.


NCERT Question.2 : Find the area of the region bounded by the ellipse
$$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$$

Solution
The given equation of ellipse is
$$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$$

which has
$$a=2 \quad\text{and}\quad b=3.$$

Ncert question. 2 : find the area of the region bounded by the ellipse
$$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$$
NCERT Question.2 : Find the area of the region bounded by the ellipse
$$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$$

The upper half of the ellipse can be written as
$$y=3\sqrt{1-\frac{x^{2}}{4}}.$$

The total area is four times the area in the first quadrant:
$$A=4\int_{0}^{2}3\sqrt{1-\frac{x^{2}}{4}}\;dx.$$

So,
$$A=12\int_{0}^{2}\sqrt{1-\frac{x^{2}}{4}}\;dx.$$

Substitute
$$x=2\sin\theta \quad\Rightarrow\quad dx=2\cos\theta\;d\theta.$$

When $x=0\Rightarrow\theta=0$
When $x=2\Rightarrow\theta=\frac{\pi}{2}$

Thus,
$$A=12\int_{0}^{\dfrac{\pi}{2}}\sqrt{1-\sin^{2}\theta}\;(2\cos\theta)\;d\theta$$

$$A=24\int_{0}^{\dfrac{\pi}{2}}\cos^{2}\theta\;d\theta.$$

Use
$$\cos^{2}\theta=\frac{1+\cos 2\theta}{2}.$$

So,
$$A=24\int_{0}^{\dfrac{\pi}{2}}\frac{1+\cos 2\theta}{2}\;d\theta$$

$$A=12\left[\theta+\frac{1}{2}\sin 2\theta\right]_{0}^{\dfrac{\pi}{2}}$$

$$A=12\cdot\frac{\pi}{2}=6\pi.$$

Final Result

$$\boxed{6\pi\;\text{square units}}$$

Score higher with expertly crafted solutions and step-by-step notes by Anand Classes, ideal for CBSE and JEE preparation.


NCERT Question.3 : Area lying in the first quadrant and bounded by the circle
$$ x^{2}+y^{2}=4 $$
and the lines $(x=0)$ and $(x=2)$ is:
(A) $\pi $
(B) $ \frac{\pi}{3} $
(C) $ \frac{\pi}{2} $
(D) $\frac{7\pi}{4} $

Solution :
The equation of circle is
$$ x^{2}+y^{2}=4. $$
Thus the radius is $2$. In the first quadrant,
$$ y=\sqrt{4-x^{2}}. $$

Ncert question. 3 : area lying in the first quadrant and bounded by the circle
$$ x^{2}+y^{2}=4 $$
and the lines $(x=0)$ and $(x=2)$ is:
NCERT Question.3 : Area lying in the first quadrant and bounded by the circle
$$ x^{2}+y^{2}=4 $$
and the lines $(x=0)$ and $(x=2)$ is:

Required area:
$$ A=\int_{0}^{2}\sqrt{4-x^{2}}\;dx $$

Use the standard integral:
$$ \int \sqrt{a^{2}-x^{2}}\;dx = \frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}\sin^{-1}\left(\frac{x}{a}\right)+C $$

Here $a=2$, so

$$
A=\left[\frac{x}{2}\sqrt{4-x^{2}}+2\sin^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}.
$$

At $x=2$:
$$
\frac{2}{2}\cdot 0 + 2\sin^{-1}(1)= 2\cdot \frac{\pi}{2} = \pi.
$$

At $x=0$:
$$
0+2\sin^{-1}(0)=0.
$$

Thus,
$$ A=\pi-0=\pi. $$

Correct Answer: (A) $( \pi )$


NCERT Question.4 : Area of the region bounded by the curve
$ y^{2}=4x, $ the y-axis and the line $ y=3 $ is:
(A) $2$
(B) $ \frac{9}{4} $
(C) $ \frac{9}{3} $
(D) $ \frac{9}{2} $

Solution
The curve is the rightward parabola
$$ y^{2}=4x. $$

From it,
$$ x=\frac{y^{2}}{4}. $$

Ncert question. 4 : area of the region bounded by the curve
$ y^{2}=4x, $ the y-axis and the line $ y=3 $ is:
NCERT Question.4 : Area of the region bounded by the curve
$ y^{2}=4x, $ the y-axis and the line $ y=3 $ is:

Required area (bounded by the parabola, y-axis, and $(y=3)$ is
$$ A=\int_{0}^{3} x\;dy. $$

Substitute $ x=\dfrac{y^{2}}{4} $:

$$
A=\int_{0}^{3} \frac{y^{2}}{4}\;dy.
$$

Compute:

$$
A=\frac{1}{4}\int_{0}^{3} y^{2}\;dy
= \frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}
= \frac{1}{4}\cdot \frac{27}{3}
= \frac{9}{4}.
$$

Correct Answer: (B) $( \dfrac{9}{4} )$

Miscellaneous Exercise NCERT Solutions (Set-4) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS