Determinants NCERT Solutions Exercise 4.5 Class 12 Math Chapter-4 PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 96391 reviews)

Access NCERT Solutions for Determinants Exercise 4.5 of Class 12 Mathematics Chapter-4


NCERT Question.7 : Solve system of linear equations using Matrix Method from given system of linear equations:
$5x + 2y = 4$
$7x + 3y = 5$

Solution
The given system of linear equations is:

$$
5x + 2y = 4
$$

$$
7x + 3y = 5
$$

Matrix form of the given equations is $AX = B$

where,

$$
A =
\begin{bmatrix}
5 & 2 \\
7 & 3
\end{bmatrix},
\quad
X =
\begin{bmatrix}
x \\
y
\end{bmatrix},
\quad
B =
\begin{bmatrix}
4 \\
5
\end{bmatrix}
$$

Determinant of $A$

$$
|A| =
\begin{vmatrix}
5 & 2 \\
7 & 3
\end{vmatrix}
= (5 \times 3) – (2 \times 7)
= 15 – 14
= 1 \ne 0
$$

Since $|A| \ne 0$, the inverse of $A$ exists and the system has a unique solution.

Finding $$X = A^{-1}B$$

$$
A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)
$$

Adjoint of $A$ is:

$$
\operatorname{adj}(A) =
\begin{bmatrix}
3 & -2 \\
-7 & 5
\end{bmatrix}
$$

Therefore,

$$
X = A^{-1}B
= \frac{1}{1}
\begin{bmatrix}
3 & -2 \\
-7 & 5
\end{bmatrix}
\begin{bmatrix}
4 \\
5
\end{bmatrix}
$$

$$
X =\begin{bmatrix}
3 \times 4 – 2 \times 5 \\
-7 \times 4 + 5 \times 5
\end{bmatrix}$$

$$
X =\begin{bmatrix}
12 – 10 \\
-28 + 25
\end{bmatrix}$$

$$
\begin{bmatrix}
x \\
y
\end{bmatrix}=\begin{bmatrix}
2 \\
-3
\end{bmatrix}
$$

$$x = 2, y = -3$$

Final Result

$$
\boxed{x = 2, y = -3}
$$

This complete NCERT-style matrix method solution for simultaneous linear equations is published by Anand Classes and authored by Neeraj Anand, Director and Main Head Faculty, designed to support Class 12 students preparing for CBSE board exams, competitive exams, and concept-based mastery of matrices.


NCERT Question.8 : Solve the system of linear equations using Matrix Method
$
2x – y = -2
$
$
3x + 4y = 3
$

Solution :
The given system of linear equations is:

$$
2x – y = -2
$$

$$
3x + 4y = 3
$$

Matrix form of the given equations is $AX = B$

where,

$$
A =
\begin{bmatrix}
2 & -1 \\
3 & 4
\end{bmatrix}
\quad
X =
\begin{bmatrix}
x \\
y
\end{bmatrix}
\quad
B =
\begin{bmatrix}
-2 \\
3
\end{bmatrix}
$$

Thus,

$$
AX = B
$$

Determinant of $A$

$$
|A| =
\begin{vmatrix}
2 & -1 \\
3 & 4
\end{vmatrix}
= (2 \times 4) – (-1 \times 3)
= 8 + 3
= 11 \ne 0
$$

Since $|A| \ne 0$, the inverse of matrix $A$ exists and the system has a unique solution.

Finding $X = A^{-1}B$

$$
A^{-1} = \frac{1}{|A|}\operatorname{adj}(A)
$$

Adjoint of $A$ is:

$$
\operatorname{adj}(A) =
\begin{bmatrix}
4 & 1 \\
-3 & 2
\end{bmatrix}
$$

Therefore,

$$
X = A^{-1}B
= \frac{1}{11}
\begin{bmatrix}
4 & 1 \\
-3 & 2
\end{bmatrix}
\begin{bmatrix}
-2 \\
3
\end{bmatrix}
$$

$$
X = \frac{1}{11}
\begin{bmatrix}
(4)(-2) + (1)(3) \\
(-3)(-2) + (2)(3)
\end{bmatrix}$$

$$X =\frac{1}{11}
\begin{bmatrix}
-8 + 3 \\
6 + 6
\end{bmatrix}$$

$$\begin{bmatrix}
x \\
y
\end{bmatrix}
=\begin{bmatrix}
-\frac{5}{11} \\
\frac{12}{11}
\end{bmatrix}
$$

Final Result

$$
\boxed{x = -\frac{5}{11}, y = \frac{12}{11}}
$$

This NCERT-based solution using the matrix inverse method is published by Anand Classes and written by Neeraj Anand, Director and Main Head Faculty, offering reliable Class 12 Mathematics support for CBSE board preparation, competitive exams, and strong conceptual understanding of linear equations using matrices.


NCERT Question.9 : Solve the system of linear equations using Matrix Method
$
4x – 3y = 3
$
$
3x – 5y = 7
$

Solution
The given system of linear equations is:

$$
4x – 3y = 3
$$

$$
3x – 5y = 7
$$

Matrix form of the given equations is $AX = B$

where,

$$
A =
\begin{bmatrix}
4 & -3 \\
3 & -5
\end{bmatrix}
\quad
X =
\begin{bmatrix}
x \
y
\end{bmatrix}
\quad
B =
\begin{bmatrix}
3 \
7
\end{bmatrix}
$$

Thus,

$$
AX = B
$$


Determinant of $A$

$$
|A| =
\begin{vmatrix}
4 & -3 \
3 & -5
\end{vmatrix}
= (4 \times -5) – (-3 \times 3)
= -20 + 9
= -11 \ne 0
$$

Since $|A| \ne 0$, the inverse of matrix $A$ exists and the system has a unique solution.


Finding $X = A^{-1}B$

$$
A^{-1} = \frac{1}{|A|}\operatorname{adj}(A)
$$

Adjoint of $A$ is:

$$
\operatorname{adj}(A) =
\begin{bmatrix}
-5 & 3 \
-3 & 4
\end{bmatrix}
$$

Therefore,

$$
X = A^{-1}B
= \frac{1}{-11}
\begin{bmatrix}
-5 & 3 \
-3 & 4
\end{bmatrix}
\begin{bmatrix}
3 \
7
\end{bmatrix}
$$

$$
X = \frac{1}{-11}
\begin{bmatrix}
(-5)(3) + (3)(7) \
(-3)(3) + (4)(7)
\end{bmatrix}

\frac{1}{-11}
\begin{bmatrix}
-15 + 21 \
-9 + 28
\end{bmatrix}

\begin{bmatrix}
-\frac{6}{11} \
-\frac{19}{11}
\end{bmatrix}
$$


Final Result

$$
\boxed{x = -\frac{6}{11},; y = -\frac{19}{11}}
$$

This NCERT-style solution using the matrix inverse method is published by Anand Classes and authored by Neeraj Anand, Director and Main Head Faculty, providing trusted Class 12 Mathematics content ideal for CBSE board exams, school assessments, and competitive exam preparation with clear matrix-based techniques.

NCERT Solutions Exercise 4.5 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS