Vector Algebra NCERT Solutions Exercise 10.4 Chapter-10 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 73861 reviews)

NCERT Question.7 : Let the given vectors
$\vec{a} = a_{1}\vec{i} + a_{2} \vec{j} + a_{3} \vec{k}$
$\vec{b} = b_{1} \vec{i} + b_{2} \vec{j} + b_{3} \vec{k}$
$\vec{c} = c_{1} \vec{i} + c_{2} \vec{j} + c_{3} \vec{k}$
Show that
$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}).$$

Solution
The given vectors are :
$\vec{a} = a_{1}\vec{i} + a_{2} \vec{j} + a_{3} \vec{k}$
$\vec{b} = b_{1} \vec{i} + b_{2} \vec{j} + b_{3} \vec{k}$
$\vec{c} = c_{1} \vec{i} + c_{2} \vec{j} + c_{3} \vec{k}$

1. Compute the Left-Hand Side (LHS)

First add the vectors:

$$\vec{b} + \vec{c} = (b_{1} + c_{1}) \vec{i} + (b_{2} + c_{2}) \vec{j} + (b_{3} + c_{3}) \vec{k}$$

Now compute the cross product:

$$
\vec{a} \times (\vec{b} + \vec{c}) =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
(b_{1}+c_{1}) & (b_{2}+c_{2}) & (b_{3}+c_{3})
\end{vmatrix}
$$

Expanding:

$$
\vec{a} \times (\vec{b} + \vec{c})=\vec{i}[a_{2}(b_{3}+c_{3}) – a_{3}(b_{2}+c_{2})]
-\vec{j}[a_{1}(b_{3}+c_{3}) – a_{3}(b_{1}+c_{1})]\\[1em]
+\vec{k}[a_{1}(b_{2}+c_{2}) – a_{2}(b_{1}+c_{1})]
$$

Rewriting terms:

$$
\vec{a} \times (\vec{b} + \vec{c})=\vec{i}(a_{2}b_{3} – a_{3}b_{2} + a_{2}c_{3} – a_{3}c_{2})
-\vec{j}(a_{1}b_{3} – a_{3}b_{1} + a_{1}c_{3} – a_{3}c_{1})\\[1em]
+\vec{k}(a_{1}b_{2} – a_{2}b_{1} + a_{1}c_{2} – a_{2}c_{1})
\quad (1)
$$

2. Compute the Right-Hand Side (RHS)

Compute $(\vec{a} \times \vec{b})$:

$$
\vec{a} \times \vec{b} =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{vmatrix}$$

$$\vec{a} \times \vec{b} =\vec{i}(a_{2}b_{3} – a_{3}b_{2})
-\vec{j}(a_{1}b_{3} – a_{3}b_{1})
+\vec{k}(a_{1}b_{2} – a_{2}b_{1})$$

Compute $(\vec{a} \times \vec{c})$:

$$
\vec{a} \times \vec{c} =
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{vmatrix}$$

$$\vec{a} \times \vec{c} =\vec{i}(a_{2}c_{3} – a_{3}c_{2})
-\vec{j}(a_{1}c_{3} – a_{3}c_{1})
+\vec{k}(a_{1}c_{2} – a_{2}c_{1})
$$

Add the results:

$$ (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})=
\vec{i}(a_{2}b_{3} – a_{3}b_{2} + a_{2}c_{3} – a_{3}c_{2})\\[1em]
-\vec{j}(a_{1}b_{3} – a_{3}b_{1} + a_{1}c_{3} – a_{3}c_{1})
+\vec{k}(a_{1}b_{2} – a_{2}b_{1} + a_{1}c_{2} – a_{2}c_{1})
\quad (2)
$$

Final Result

By comparing expressions (1) and (2):

$$\boxed{\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})}$$

This confirms the distributive property of the vector cross product.

Master vector identities easily with structured notes and solved examples from Anand Classes, ideal for CBSE and JEE preparation.


NCERT Question.8 : If either $\vec a = \vec 0$ or $\vec b = \vec 0$, then $\vec a \times \vec b = \vec 0$. Is the converse true? Justify your answer with an example.

Solution
The converse of the statement is not true.

The magnitude of the cross product is
$$|\vec a \times \vec b| = |\vec a||\vec b|\sin\theta$$
where $\theta$ is the angle between $\vec a$ and $\vec b$.

For
$$\vec a \times \vec b = \vec 0$$
we must have
$$|\vec a||\vec b|\sin\theta = 0.$$

This happens if:

  1. $|\vec a| = 0$ meaning $\vec a = \vec 0$
  2. $|\vec b| = 0$ meaning $\vec b = \vec 0$
  3. $\sin\theta = 0$ meaning $\theta = 0^\circ$ or $180^\circ$
    (vectors are parallel or collinear)

The converse claims:

If $\vec a \times \vec b = \vec 0$, then either $\vec a = \vec 0$ or $\vec b = \vec 0$.

This is false, because the vectors may be non-zero but parallel.

Example
Let
$$\vec a = \hat i + \hat j$$

$$\vec b = 2\hat i + 2\hat j$$

Both vectors are non-zero.

Compute the cross product:
$$\vec a \times \vec b =
\begin{vmatrix}
\hat i & \hat j & \hat k\\
1 & 1 & 0\\
2 & 2 & 0
\end{vmatrix}$$

Expanding:
$$\vec a \times \vec b = \hat i(1\cdot 0 – 0\cdot 2) – \hat j(1\cdot 0 – 0\cdot 2) + \hat k(1\cdot 2 – 1\cdot 2)$$

$$\vec a \times \vec b = \hat i(0) – \hat j(0) + \hat k(0)$$

$$\vec a \times \vec b = \vec 0$$

Here
$$\vec b = 2\vec a$$

so the vectors are collinear, not zero.

Thus, the converse is not true.


NCERT Question.9 : Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.

Solution
Compute side vectors

$$\overrightarrow{AB}=\vec{B}-\vec{A}=(2-1)\hat{i}+(3-1)\hat{j}+(5-2)\hat{k}=1\hat{i}+2\hat{j}+3\hat{k}$$

$$\overrightarrow{AC}=\vec{C}-\vec{A}=(1-1)\hat{i}+(5-1)\hat{j}+(5-2)\hat{k}=0\hat{i}+4\hat{j}+3\hat{k}$$

Cross product

$$\overrightarrow{AB}\times\overrightarrow{AC}=
\begin{vmatrix}
\;\hat{i} & \hat{j} & \hat{k} \;\\
\;1 & 2 & 3 \;\\
\;0 & 4 & 3\;
\end{vmatrix}$$

$$\overrightarrow{AB}\times\overrightarrow{AC}=\hat{i}(2\cdot 3-3\cdot 4)-\hat{j}(1\cdot 3-3\cdot 0)+\hat{k}(1\cdot 4-2\cdot 0)$$

$$\overrightarrow{AB}\times\overrightarrow{AC}= -6\hat{i}-3\hat{j}+4\hat{k}$$

Magnitude

$$\bigl|\overrightarrow{AB}\times\overrightarrow{AC}\bigr|=\sqrt{(-6)^2+(-3)^2+4^2}=\sqrt{36+9+16}=\sqrt{61}$$

Area of triangle

$$\text{Area}=\frac{1}{2}\bigl|\overrightarrow{AB}\times\overrightarrow{AC}\bigr|=\frac{\sqrt{61}}{2}$$

Final Result

$$\boxed{\text{Area}=\frac{\sqrt{61}}{2}\ \text{square units}}$$

Build strong problem solving skills with concise, stepwise vector geometry notes from Anand Classes, ideal for CBSE and JEE preparation and perfect for quick revision and practice.


NCERT Question.10 : Find the area of the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3\hat{k}$ and $\vec{b}=2\hat{i}-7\hat{j}+\hat{k}$

Solution
The area of a parallelogram with adjacent sides $\vec{a}$ and $\vec{b}$ is given by the magnitude of their cross product, $|\vec{a}\times\vec{b}|$. First, calculate the cross product:
$$\vec{a}\times\vec{b}=\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}\\
1 & -1 & 3\\
2 & -7 & 1
\end{vmatrix}$$

Expand
$$\vec{a}\times\vec{b}=\hat{i}(-1\cdot1-3\cdot-7)-\hat{j}(1\cdot1-3\cdot2)+\hat{k}(1\cdot-7-(-1)\cdot2)$$

$$\vec{a}\times\vec{b}=20\hat{i}+5\hat{j}-5\hat{k}$$

Magnitude
$$|\vec{a}\times\vec{b}|=\sqrt{20^2+5^2+(-5)^2}$$

$$|\vec{a}\times\vec{b}|=\sqrt{400+25+25}$$

$$|\vec{a}\times\vec{b}|=\sqrt{450}$$

$$|\vec{a}\times\vec{b}|=15\sqrt{2}$$

Final Result

$$\boxed{15\sqrt{2}}$$

Master vector algebra with stepwise, exam-focused solutions from Anand Classes, perfect for strengthening CBSE and JEE preparation with high-quality study content.


NCERT Question.11 : Let the vectors $\vec{a}$ and $\vec{b}$ satisfy $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$.
If $\vec{a}\times\vec{b}$ is a unit vector, find the angle between $\vec{a}$ and $\vec{b}$.

Solution
Use the magnitude formula
$$|\vec{a}\times\vec{b}|=|\vec{a}||\vec{b}|\sin\theta$$

Given
$$|\vec{a}|=3$$

$$|\vec{b}|=\frac{\sqrt{2}}{3}$$

and
$$|\vec{a}\times\vec{b}|=1$$

Substitute

$$|\vec{a}\times\vec{b}|=|\vec{a}||\vec{b}|\sin\theta$$

$$1=3\cdot\frac{\sqrt{2}}{3}\sin\theta$$

Simplify
$$1=\sqrt{2}\sin\theta$$

$$\sin\theta=\frac{1}{\sqrt{2}}$$

Thus
$$\theta=\frac{\pi}{4}$$

Final Result

$$\boxed{\frac{\pi}{4}}$$

Clarify every concept of vector algebra with these structured solutions from Anand Classes, ideal for CBSE and JEE aspirants looking for crisp, exam-focused notes.


NCERT Question.12 : Area of a rectangle having vertices $ A, B, C, D $ with position vectors
$\vec{A} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\;$, $\vec{B} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\;$, $\vec{C} = \hat{i} – \frac{1}{2}\hat{j} + 4\hat{k}\;$, $\vec{D} = -\hat{i} – \frac{1}{2}\hat{j} + 4\hat{k}$
is
(A) $\frac{1}{2}$ (B) $1$ (C) $2$ (D) $4$

Solution
Step 1: Write the position vectors

$$\vec{A} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$$

$$\vec{B} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$$

$$\vec{C} = \hat{i} – \frac{1}{2}\hat{j} + 4\hat{k}$$

$$\vec{D} = -\hat{i} – \frac{1}{2}\hat{j} + 4\hat{k}$$

Step 2: Find two adjacent side vectors
$$\overrightarrow{AB} = \vec{B} – \vec{A}$$

$$\overrightarrow{AB}= \left(\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\right) – \left(-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\right)$$

$$\overrightarrow{AB}= 2\hat{i}$$

$$\overrightarrow{AD} = \vec{D} – \vec{A}$$

$$\overrightarrow{AD}= \left(-\hat{i} – \frac{1}{2}\hat{j} + 4\hat{k}\right) – \left(-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}\right)$$

$$\overrightarrow{AD}= -\hat{j}$$

Step 3: Compute the cross product

$$\overrightarrow{AB} \times \overrightarrow{AD} = (2\hat{i}) \times (-\hat{j})$$

$$\overrightarrow{AB} \times \overrightarrow{AD}= -2(\hat{i} \times \hat{j})$$

$$\overrightarrow{AB} \times \overrightarrow{AD}= -2\hat{k}$$

Step 4: Area of the rectangle

Magnitude of cross product gives the area of rectangle

$$\text{Area} =|\overrightarrow{AB} \times \overrightarrow{AD}|$$

$$\text{Area} = \left| -2\hat{k} \right| = 2$$

Final Result

$$\boxed{2}$$

The correct option is (C).

Enhance your vector algebra mastery with detailed explanations like this from Anand Classes. Perfect for strengthening CBSE and JEE preparation with clear step by step NCERT based solutions and high quality study support.

โฌ…๏ธ NCERT Solutions Miscellaneous Exercise (Set-1) NCERT Solutions Exercise 10.4 9Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS