Vector Algebra NCERT Solutions Exercise 10.4 Chapter-10 Class 12 Math Notes PDF Free Download (Set-1)

โญโญโญโญโœฉ (4.8/5 from 48621 reviews)

NCERT Question.1 : Find $|\vec{a}\times \vec{b}|$ if
$\vec{a}= \hat{i}-7\hat{j}+7\hat{k}$ and $\vec{b}=3\hat{i}-2\hat{j}+2\hat{k}$.

Solution
The given vectors are
$$
\vec{a}= \hat{i}-7\hat{j}+7\hat{k}
$$

$$
\vec{b}= 3\hat{i}-2\hat{j}+2\hat{k}
$$

Step 1: Compute the cross product $\vec{a}\times \vec{b}$

$$
\vec{a}\times \vec{b}=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{vmatrix}
$$

$$
\vec{a}\times \vec{b}=
\hat{i}((-7)(2)-(7)(-2))
-\hat{j}((1)(2)-(7)(3))
+\hat{k}((1)(-2)-(-7)(3))
$$

$$
\vec{a}\times \vec{b}=
\hat{i}(-14+14)
-\hat{j}(2-21)
+\hat{k}(-2+21)
$$

$$
\vec{a}\times \vec{b}=0\hat{i}+19\hat{j}+19\hat{k}
$$

Step 2: Magnitude of the cross product

$$
|\vec{a}\times \vec{b}|=\sqrt{0^{2}+19^{2}+19^{2}}
$$

$$
|\vec{a}\times \vec{b}|=\sqrt{361+361}
$$

$$
|\vec{a}\times \vec{b}|=19\sqrt{2}
$$

Final Result

$$
\boxed{19\sqrt{2}}
$$

Strengthen your NCERT and JEE preparation with high-quality vector algebra notes and clear explanations from Anand Classes, perfect for scoring full marks in board and competitive exams.


NCERT Question.2 : Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where
$\vec{a}=3\hat{i}+2\hat{j}+2\hat{k}$ and $\vec{b}=\hat{i}+2\hat{j}-2\hat{k}$.

Solution

Step 1: Compute $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

$$
\vec{a}+\vec{b}=(3\hat{i}+2\hat{j}+2\hat{k})+(\hat{i}+2\hat{j}-2\hat{k})
$$

$$
\vec{a}+\vec{b}=4\hat{i}+4\hat{j}+0\hat{k}
$$

$$
\vec{a}-\vec{b}=(3\hat{i}+2\hat{j}+2\hat{k})-(\hat{i}+2\hat{j}-2\hat{k})
$$

$$
\vec{a}-\vec{b}=2\hat{i}+0\hat{j}+4\hat{k}
$$

Step 2: Cross product $(\vec{a}+\vec{b})\times(\vec{a}-\vec{b})$

$$
(\vec{a}+\vec{b})\times(\vec{a}-\vec{b})=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
4 & 4 & 0 \\
2 & 0 & 4
\end{vmatrix}
$$

$$ (\vec{a}+\vec{b})\times(\vec{a}-\vec{b})= \hat{i}(4\cdot 4 – 0\cdot 0) -\hat{j}(4\cdot 4 – 0\cdot 2) +\hat{k}(4\cdot 0 – 4\cdot 2) $$

$$
(\vec{a}+\vec{b})\times(\vec{a}-\vec{b})= 16\hat{i} – 16\hat{j} – 8\hat{k}
$$

Let
$$
\vec{c}=16\hat{i}-16\hat{j}-8\hat{k}
$$

Step 3: Magnitude of $\vec{c}$

$$
|\vec{c}|=\sqrt{16^{2}+(-16)^{2}+(-8)^{2}}
$$

$$
|\vec{c}|=\sqrt{256+256+64}
$$

$$
|\vec{c}|=24
$$

Step 4: Unit vector perpendicular to both vectors

$$
\hat{c}=\pm\frac{\vec{c}}{|\vec{c}|}
=\pm\frac{16\hat{i}-16\hat{j}-8\hat{k}}{24}
$$

Factor $8$:

$$
\hat{c}=\pm\frac{2\hat{i}-2\hat{j}-\hat{k}}{3}
$$

Final Result

$$
\boxed{\pm\left(\frac{2}{3}\hat{i}-\frac{2}{3}\hat{j}-\frac{1}{3}\hat{k}\right)}
$$

Boost your vector algebra understanding with expertly structured NCERT and JEE-focused explanations from Anand Classes, ideal for mastering cross products, unit vectors, and 3D geometry concepts.


NCERT Question.3 : If a unit vector $\vec{a}$ makes angles $\frac{\pi}{3}$ with $\hat{i}$, $\frac{\pi}{4}$ with $\hat{j}$ and an acute angle $\theta$ with $\hat{k}$, then find $\theta$ and hence the components of $\vec{a}$.

Solution
For a vector making angles $\alpha$, $\beta$, $\gamma$ with the coordinate axes, the direction cosines satisfy

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Given:

  • $\alpha = \frac{\pi}{3}$
  • $\beta = \frac{\pi}{4}$
  • $\gamma = \theta$ (acute)

Substitute the values:

$$\cos^2 \left( \frac{\pi}{3} \right) + \cos^2 \left( \frac{\pi}{4} \right) + \cos^2 \theta = 1$$

Compute the cosine values:

$$\cos \left( \frac{\pi}{3} \right) = \frac{1}{2} \Rightarrow \cos^2 \left( \frac{\pi}{3} \right) = \frac{1}{4}$$

$$\cos \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \Rightarrow \cos^2 \left( \frac{\pi}{4} \right) = \frac{1}{2}$$

Substitute them:

$$\frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\frac{3}{4} + \cos^2 \theta = 1$$

$$\cos^2 \theta = \frac{1}{4}$$

Since $\theta$ is acute:

$$\cos \theta = \frac{1}{2}$$

Thus:

$$\theta = \frac{\pi}{3}$$

Components of the Unit Vector

A unit vector $\vec{a}$ having direction cosines $l, m, n$ is written as

$$\vec{a} = l \hat{i} + m \hat{j} + n \hat{k}$$

Compute each:

$$l = \cos \alpha = \cos \left( \frac{\pi}{3} \right) = \frac{1}{2}$$

$$m = \cos \beta = \cos \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$n = \cos \theta = \cos \left( \frac{\pi}{3} \right) = \frac{1}{2}$$

Thus the required unit vector is

$$\vec{a} = \frac{1}{2} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{2} \hat{k}$$

Final Result

$$\boxed{\theta = \frac{\pi}{3} \quad \text{and} \quad \vec{a} = \frac{1}{2} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{2} \hat{k}}$$

Access more beautifully formatted vector algebra notes and detailed explanations from Anand Classes, ideal for JEE and CBSE students seeking top-quality study material.


NCERT Question.4 : Show that
$$(\vec{a}-\vec{b}) \times (\vec{a}+\vec{b}) = 2(\vec{a} \times \vec{b})$$

Solution
Start with the given expression:

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b}) $$

Apply the distributive property of the cross product:

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b}) = \vec{a} \times (\vec{a}+\vec{b}) – \vec{b} \times (\vec{a}+\vec{b}) $$

Expand each term:

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b})= (\vec{a} \times \vec{a}) + (\vec{a} \times \vec{b}) – (\vec{b} \times \vec{a}) – (\vec{b} \times \vec{b}) $$

Use the identities:

  • $\vec{a} \times \vec{a} = \vec{0}$
  • $\vec{b} \times \vec{b} = \vec{0}$
  • $\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$

Substitute:

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b})= \vec{0} + (\vec{a} \times \vec{b}) – \left( -(\vec{a} \times \vec{b}) \right) – \vec{0} $$

Simplify:

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b})= \vec{a} \times \vec{b} + \vec{a} \times \vec{b} $$

$$ (\vec{a}-\vec{b}) \times (\vec{a}+\vec{b})= 2(\vec{a} \times \vec{b}) $$

Final Result

$$\boxed{(\vec{a}-\vec{b}) \times (\vec{a}+\vec{b}) = 2(\vec{a} \times \vec{b})}$$

For more vector algebra solutions and step-by-step explanations, explore high-quality study material from Anand Classes, ideal for JEE and CBSE preparation.


NCERT Question.5 : Find $\lambda$ and $\mu$ if
$$(2\hat{i}+6\hat{j}+27\hat{k}) \times (\hat{i}+\lambda \hat{j}+\mu \hat{k}) = \vec{0}$$

Solution
Let
$$\vec{a} = 2\hat{i} + 6\hat{j} + 27\hat{k}$$

$$\vec{b} = \hat{i} + \lambda \hat{j} + \mu \hat{k}$$

Compute the cross product using the determinant:

$$
\vec{a} \times \vec{b} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 6 & 27 \\
1 & \lambda & \mu
\end{vmatrix}
$$

Expand along the first row:

$$ \vec{a} \times \vec{b} = \hat{i}(6\mu – 27\lambda)-\hat{j}(2\mu – 27)+\hat{k}(2\lambda – 6)$$

Since
$$\vec{a} \times \vec{b} = \vec{0} = 0\hat{i}+0\hat{j}+0\hat{k}$$
each component must be zero.

From the $\hat{k}$โ€“component:

$$2\lambda – 6 = 0$$

$$2\lambda = 6$$

$$\lambda = 3$$

From the $\hat{j}$โ€“component:

$$-(2\mu – 27) = 0$$

$$2\mu – 27 = 0$$

$$2\mu = 27$$

$$\mu = \frac{27}{2}$$

Verification using the $\hat{i}$โ€“component:

$$6\mu – 27\lambda = 0$$

Substitute $\lambda = 3$ and $\mu = \dfrac{27}{2}$:

$$6 \left(\frac{27}{2}\right) – 27(3) = 0$$

$$81 – 81 = 0$$

True โœ”๏ธ

Final Result

$$\boxed{\lambda = 3 \quad,\quad \mu = \frac{27}{2}}$$

Strengthen your vector algebra practice with expertly prepared notes from Anand Classes, ideal for JEE Main, JEE Advanced, and CBSE learners.


NCERT Question.6 : Given that
$$\vec{a}\cdot \vec{b} = 0 \quad \text{and} \quad \vec{a}\times \vec{b} = \vec{0}$$
What can you conclude about the vectors $\vec{a}$ and $\vec{b}$?

Solution
Condition 1: Dot product is zero

$$\vec{a}\cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 0$$

This is possible only if:

  • $|\vec{a}| = 0$ (i.e., $\vec{a}$ is the zero vector), or
  • $|\vec{b}| = 0$ (i.e., $\vec{b}$ is the zero vector), or
  • $\cos\theta = 0$ which implies $$\theta = \frac{\pi}{2}$$ (vectors are perpendicular)

Condition 2: Cross product is zero

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin\theta = 0$$

This is possible only if:

  • $|\vec{a}| = 0$
  • $|\vec{b}| = 0$
  • $\sin\theta = 0$ which implies $$\theta = 0 \quad \text{or} \quad \theta = \pi$$
    (vectors are parallel or anti-parallel)

Combine the Conditions

Both must hold simultaneously.

If $\vec{a}$ and $\vec{b}$ are non-zero, then:

  • From dot product: $\theta = \frac{\pi}{2}$
  • From cross product: $\theta = 0$ or $\pi$

A single angle cannot be both $\frac{\pi}{2}$ and $0$ or $\pi$.

This is impossible unless one or both vectors are zero.

Final Result

$$\boxed{\text{At least one of the vectors } \vec{a} \text{ or } \vec{b} \text{ must be the zero vector.}}$$

Strengthen your conceptual clarity with high-quality revision notes and solved examples from Anand Classes, ideal for JEE and CBSE vector algebra practice.

โฌ…๏ธ NCERT Solutions Exercise 10.4 (Set-2) NCERT Solutions Exercise 10.3 (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS