NCERT Solutions Vector Algebra Exercise 10.3 Chapter-10 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 71857 reviews)

NCERT Solutions for Exercise 10.3 of Chapter 10 Vector Algebra for Class 12 Mathematics


NCERT Question.10 : If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $(\vec{a} + \lambda \vec{b})$ is perpendicular to $\vec{c}$. Ffind the value of $\lambda$.

Solution
Since $\vec{a} + \lambda \vec{b}$ is perpendicular to $\vec{c}$, their dot product is zero:

$$
(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0
$$

Expand:

$$
\vec{a} \cdot \vec{c} + \lambda \vec{b} \cdot \vec{c} = 0
$$

Compute each dot product.

1. Calculate $\vec{a} \cdot \vec{c}$

$$
(\vec{a} \cdot \vec{c})=(2\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} + \hat{j})
$$

$$
(\vec{a} \cdot \vec{c})= 2\cdot 3 + 2\cdot 1 + 3\cdot 0
$$

$$
(\vec{a} \cdot \vec{c})= 6 + 2 = 8
$$

2. Calculate $\vec{b} \cdot \vec{c}$

$$
(\vec{b} \cdot \vec{c})=(-\hat{i} + 2\hat{j} + \hat{k}) \cdot (3\hat{i} + \hat{j})
$$

$$
(\vec{b} \cdot \vec{c})= -1\cdot 3 + 2\cdot 1 + 1\cdot 0
$$

$$
(\vec{b} \cdot \vec{c})= -3 + 2 = -1
$$

Substitute into the perpendicularity condition:

$$
\vec{a} \cdot \vec{c} + \lambda \vec{b} \cdot \vec{c} = 0
$$

$$
8 + \lambda(-1) = 0
$$

$$
8 – \lambda = 0
$$

$$
\lambda = 8
$$

Final Result

$$\boxed{\lambda = 8}$$

For complete NCERT vector algebra solutions with clean step-by-step explanations, explore the detailed study resources from Anand Classesโ€”ideal for CBSE and JEE students looking for clear, exam-focused notes.


NCERT Question.11 : Show that $|\vec a|\vec b + |\vec b|\vec a$ is perpendicular to $|\vec a|\vec b – |\vec b|\vec a$ for any two nonzero vectors $\vec a$ and $\vec b$.

Solution
Let
$$\vec u = |\vec a|\vec b + |\vec b|\vec a$$

and

$$\vec v = |\vec a|\vec b – |\vec b|\vec a.$$

To show perpendicularity, we compute the dot product:

$$\vec u \cdot \vec v = (|\vec a|\vec b + |\vec b|\vec a)\cdot (|\vec a|\vec b – |\vec b|\vec a).$$

Expanding:

$$\vec u \cdot \vec v = |\vec a|^2(\vec b \cdot \vec b) – |\vec a||\vec b|(\vec b \cdot \vec a) + |\vec b||\vec a|(\vec a \cdot \vec b) – |\vec b|^2(\vec a \cdot \vec a).$$

Since
$$\vec a \cdot \vec b = \vec b \cdot \vec a,$$
the middle terms cancel out.

Thus:

$$\vec u \cdot \vec v = |\vec a|^2|\vec b|^2 – |\vec b|^2|\vec a|^2.$$

So:

$$\vec u \cdot \vec v = 0.$$

Hence the vectors are perpendicular.

Final Result

$$\boxed{(|\vec a|\vec b + |\vec b|\vec a) \;\perp \; (|\vec a|\vec b – |\vec b|\vec a)}$$

Strengthen your preparation with high-quality study material, chapter notes, and solved examples from Anand Classes, perfect for CBSE and JEE aspirants looking to master vector algebra.


NCERT Question.12 : If $\vec a \cdot \vec a = 0$ and $\vec a \cdot \vec b = 0$ then what can be concluded about the vector $\vec a$?

Solution
Given:

$$\vec a \cdot \vec a = 0$$

and

$$\vec a \cdot \vec b = 0$$

which means $\vec a \; \perp \;\vec b $

Now,

$$\vec a \cdot \vec a = |\vec a|^2.$$

Thus,

$$|\vec a|^2 = 0.$$

This gives:

$$|\vec a| = 0.$$

A vector whose magnitude is zero is the zero vector:

$$\vec a = \vec 0.$$

Now consider:

$$\vec a \cdot \vec b = 0.$$

Since $\vec a = \vec 0$,

$$\vec 0 \cdot \vec b = 0,$$

which is true for any vector $\vec b$.

Thus, the conclusion about $\vec b $ is that it can be any vector, as long as it is perpendicular to $\vec a $. The only constraint is that $\vec b $ must be perpendicular to $\vec a $.

Hence, $\vec b$ can be any vector because the zero vector is perpendicular to every vector.

Final Result

$$\boxed{\vec a = \vec 0 \text{ and } \vec b \text{ can be any vector}}$$

Boost your understanding of vector algebra with expertly designed notes and solved examples from Anand Classes, ideal for CBSE and JEE aspirants aiming for high scores.


NCERT Question.13 : If $\vec a,\vec b,\vec c$ are unit vectors such that
$$\vec a + \vec b + \vec c = \vec 0$$
find the value of $ \vec a\cdot\vec b + \vec b\cdot\vec c + \vec c\cdot\vec a$.

Solution
Given $|\vec a|=|\vec b|=|\vec c|=1$ and
$$\vec a + \vec b + \vec c = \vec 0.$$

Take dot product of the equation with $\vec a$:
$$\vec a\cdot(\vec a+\vec b+\vec c)=\vec a\cdot\vec 0 = 0.$$
Thus
$$\vec a\cdot\vec a + \vec a\cdot\vec b + \vec a\cdot\vec c = 0.$$
Since $|\vec a|^2=\vec a\cdot\vec a = 1$ we get
$$1 + \vec a\cdot\vec b + \vec a\cdot\vec c = 0\qquad(1)$$

Similarly dotting with $\vec b$ gives
$$1 + \vec b\cdot\vec c + \vec b\cdot\vec a = 0\qquad(2)$$

Dotting with $\vec c$ gives
$$1 + \vec c\cdot\vec a + \vec c\cdot\vec b = 0\qquad(3)$$

Add equations (1), (2) and (3):
$$3 + 2\bigl(\vec a\cdot\vec b + \vec b\cdot\vec c + \vec c\cdot\vec a\bigr) = 0.$$

Hence
$$\vec a\cdot\vec b + \vec b\cdot\vec c + \vec c\cdot\vec a = -\frac{3}{2}.$$

Final Result

$$\boxed{\;\vec a\cdot\vec b + \vec b\cdot\vec c + \vec c\cdot\vec a = -\frac{3}{2}\;}$$

Boost your vector skills with concise NCERT-style solutions and practice material from Anand Classes, ideal for CBSE and JEE preparation.


NCERT Question.14 : If either vector $ \vec a = \vec 0 $ or $ \vec b = \vec 0 $, then $ \vec a \cdot \vec b = 0 $. But the converse need not be true. Justify your answer with an example.

Solution
The dot product formula is
$$\vec a \cdot \vec b = |\vec a||\vec b|\cos\theta$$
where $|\vec a|$ and $|\vec b|$ are magnitudes and $\theta$ is the angle between the vectors.

If $ \vec a = \vec 0 $ then $|\vec a| = 0$ and therefore for any $ \vec b $
$$\vec a \cdot \vec b = 0\cdot|\vec b|\cos\theta = 0.$$
Similarly if $ \vec b = \vec 0 $ then $ \vec a \cdot \vec b = 0.$

For the converse suppose $ \vec a \cdot \vec b = 0 $. This implies either $|\vec a|=0$ or $|\vec b|=0$ or $\cos\theta = 0$. The last case means $\theta = 90^\circ$ and the vectors are perpendicular but not zero. Thus $ \vec a \cdot \vec b = 0 $ does not force either vector to be the zero vector.

A simple concrete example in $\mathbb R^2$ is
$$\vec a = (1,0)=\hat\imath,\qquad \vec b=(0,1)=\hat\jmath.$$
Their dot product is
$$\vec a\cdot\vec b = 1\cdot 0 + 0\cdot 1 = 0.$$
But $ \vec a \neq \vec 0 $ and $ \vec b \neq \vec 0 $. Hence the converse is false.

Final Result

$$\boxed{\text{If } \vec a\cdot\vec b=0 \text{ then } \vec a \text{ or } \vec b \text{ need not be } \vec 0\ ;\ \text{they may be perpendicular}}$$

Improve your conceptual clarity with focused vector algebra notes and solved problems from Anand Classes ideal for CBSE and JEE preparation.


NCERT Question.15 : If the vertices $A, B, C$ of a triangle $ABC$ are $(1, 2, 3), (โ€“1, 0, 0), (0, 1, 2)$, respectively, then find $\angle ABC$. [Here $\angle ABC$ is the angle between vectors $\overrightarrow{BA}$ and $\overrightarrow{BC}$.

Solution
Compute the vectors from Vertx $B$ to the other vertices.

$$\overrightarrow{BA}=\overrightarrow{A}-\overrightarrow{B}=(1-(-1),\;2-0,\;3-0)=(2,\;2,\;3)$$

$$\overrightarrow{BC}=\overrightarrow{C}-\overrightarrow{B}=(0-(-1),\;1-0,\;2-0)=(1,\;1,\;2)$$

Dot product:

$$\overrightarrow{BA}\cdot\overrightarrow{BC}=(2)(1)+(2)(1)+(3)(2)=2+2+6=10$$

Magnitudes:

$$|\overrightarrow{BA}|=\sqrt{2^2+2^2+3^2}=\sqrt{4+4+9}=\sqrt{17}$$

$$|\overrightarrow{BC}|=\sqrt{1^2+1^2+2^2}=\sqrt{1+1+4}=\sqrt{6}$$

Cosine of the angle:

$$\cos\theta=\frac{\overrightarrow{BA}\cdot\overrightarrow{BC}}{|\overrightarrow{BA}|\;|\overrightarrow{BC}|}
=\frac{10}{\sqrt{17}\sqrt{6}}=\frac{10}{\sqrt{102}}$$

Therefore

$$\theta=\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$$

Numerical value

$$\theta\approx 8.0495^\circ\quad\text{(approximately)}$$

Final Result

$$\boxed{\theta=\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)\approx 8.0495^\circ}$$

Prepare smarter with clear, stepwise geometry and vector solutions from Anand Classes perfect for CBSE and JEE revision and practice.


NCERT Question.16 : Show that the points $A(1, 2, 7), B(2, 6, 3)$ and $C(3, 10, -1)$ are collinear.

Solution :
Direction vector $\overrightarrow{AB}$

$$
\vec{AB}=(2-1,6-2,3-7)=(1,4,-4)
$$

Direction vector $\overrightarrow{BC}$

$$
\overrightarrow{BC}=(3-2,10-6,-1-3)=(1,4,-4)
$$

Conclusion
Since
$$\overrightarrow{AB}=\vec{BC}=(1,4,-4),$$
both vectors have the same direction.

Therefore, the points $(A), (B)$ and $(C)$ are collinear.

Prepare smarter with clear, stepwise geometry and vector solutions of collinearity from Anand Classes perfect for CBSE and JEE revision and practice.


NCERT Question.17 : Show that the vectors
$2\hat{i}-\hat{j} + \hat{k}, \hat{i} – 3\hat{j} – 5\hat{k}, 3\hat{i} – 4\hat{j} – 4\hat{k}$
form the vertices of a right-angled triangle.

Solution
Let
$$\vec{A}=2\hat{i}-\hat{j}+\hat{k},\quad \vec{B}=\hat{i}-3\hat{j}-5\hat{k},\quad \vec{C}=3\hat{i}-4\hat{j}-4\hat{k}.$$

Step 1: Compute magnitudes

$$
|\vec{A}|=\sqrt{2^2+(-1)^2+1^2}=\sqrt{4+1+1}=\sqrt{6}
$$

$$
|\vec{B}|=\sqrt{1^2+(-3)^2+(-5)^2}=\sqrt{1+9+25}=\sqrt{35}
$$

$$
|\vec{C}|=\sqrt{3^2+(-4)^2+(-4)^2}=\sqrt{9+16+16}=\sqrt{41}
$$

Step 2: Check Pythagoras relation

$$
|\vec{A}|^2+|\vec{B}|^2=6+35=41=|\vec{C}|^2
$$

Conclusion

Since
$$|\vec{A}|^2+|\vec{B}|^2=|\vec{C}|^2$$
the three vectors satisfy the Pythagoras theorem. Therefore, the vectors represent the vertices of a right-angled triangle.

Final Result

$$\boxed{\text{The three given vectors form a right-angled triangle.}}$$

Top-quality explanations like this are regularly provided in the study material by Anand Classes, ideal for CBSE and JEE preparation.


NCERT Question.18 : If $\vec{a}$ is a nonzero vector of magnitude $a$ and $\lambda$ a nonzero scalar, then $\lambda\vec{a}$ is a unit vector if:
(A) $\lambda = 1$
(B) $\lambda = -1$
(C) $a = |\lambda|$
(D) $a = \frac{1}{|\lambda|}$

Solution
For $\lambda\vec{a}$ to be a unit vector:

$$|\lambda\vec{a}|=1$$

Magnitude property:

$$|\lambda\vec{a}|=|\lambda||\vec{a}|$$

Given $|\vec{a}|=a$, we have:

$$|\lambda|a=1$$

Solve for (a):

$$a=\frac{1}{|\lambda|}$$

Final Result

$$\boxed{a=\frac{1}{|\lambda|}}$$
So the correct option is (D).

Get more such solved NCERT vector algebra problems in the premium notes by Anand Classes, perfect for CBSE and JEE preparation.

โฌ…๏ธ NCERT Solutions Exercise 10.4 9Set-1) NCERT Solutions Exercise 10.3 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS