Vector Algebra NCERT Solutions Exercise 10.3 Chapter-10 Class 12 Math Notes PDF Free Download (Set-1)

⭐⭐⭐⭐⭐ (5/5 from 89346 reviews)

NCERT Question.1 : Find the angle between two vectors $\vec{a}$ and $\vec{b}$ with magnitudes $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

Solution :
Using the dot product formula:

$$
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta
$$

Substitute the values:

$$
\cos\theta = \frac{\sqrt{6}}{\sqrt{3} \cdot 2}
$$

Simplify:

$$
\cos\theta = \frac{\sqrt{6}}{2\sqrt{3}}
= \frac{\sqrt{6}}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}
= \frac{\sqrt{18}}{6}
= \frac{3\sqrt{2}}{6}
= \frac{\sqrt{2}}{2}
$$

Now find $\theta$:

$$
\theta = \cos^{-1}\left(\frac{\sqrt{2}}{2}\right)
$$

Thus,

$$
\theta = \frac{\pi}{4} \quad \text{or} \quad 45^\circ
$$

So, the angle between $\vec{a}$ and $\vec{b}$ is 45°.


NCERT Question.2 : Find the angle between the vectors
$\vec{a} = \hat{i} – 2\hat{j} + 3\hat{k}$ and
$\vec{b} = 3\hat{i} – 2\hat{j} + \hat{k}$

Solution
Given Vectors
$\vec{a} = \hat{i} – 2\hat{j} + 3\hat{k}$ and
$\vec{b} = 3\hat{i} – 2\hat{j} + \hat{k}$

Dot Product : To calculate the dot product, we multiply corresponding components and then add:

$$\vec{a} \cdot \vec{b} =( \hat{i} – 2\hat{j} + 3\hat{k})\cdot ( 3\hat{i} – 2\hat{j} + \hat{k})$$

$$\vec{a} \cdot \vec{b} = (1 \cdot 3) + (-2 \cdot -2) + (3 \cdot 1)$$

$$\vec{a} \cdot \vec{b}= 3 + 4 + 3 = 10$$

Magnitude of Vectors

Using $|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$

$$|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2}$$

$$|\vec{a}|= \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2}$$

$$|\vec{b}|= \sqrt{9 + 4 + 1} = \sqrt{14}$$

Cosine of the Angle

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

$$\cos\theta= \frac{10}{\sqrt{14}\sqrt{14}}$$

$$\cos\theta= \frac{10}{14}$$

$$\cos\theta= \frac{5}{7}$$

Angle Between the Vectors

$$\theta = \cos^{-1}\left(\frac{5}{7}\right)$$

Final Result

$$\boxed{\theta = \cos^{-1}\left(\frac{5}{7}\right)}$$

Prepare effectively for CBSE and JEE exams with clear vector algebra explanations and high quality notes from Anand Classes, designed to strengthen conceptual understanding and problem solving skills.


NCERT Question.3 : Find the projection of the vector
$\vec{a} = \hat{i} – \hat{j}\;$ on the vector $\vec{b} = \hat{i} + \hat{j}$

Solution
First, let’s find the dot product of given vectors.

Dot Product

$$\vec{a} \cdot \vec{b} =( \hat{i} – \hat{j})\cdot ( \hat{i} + \hat{j})$$

$$\vec{a} \cdot \vec{b} = (1 \cdot 1) + (-1 \cdot 1)$$

$$\vec{a} \cdot \vec{b}= 1 – 1 = 0$$

Magnitude of $\vec{b}$

$$|\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Projection of $\vec{a}$ on $\vec{b}$

Using
$$\text{Projection}_{\vec{b}}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\vec{b}$$

$$\text{Projection}_{\vec{b}}(\vec{a}) = \frac{0}{2}(\hat{i} + \hat{j})$$

$$= 0(\hat{i} + \hat{j})$$

$$= \vec{0}$$

Final Result

$$\boxed{\vec{0}}$$

Strengthen your vector algebra concepts with clear explanations and high quality study notes from Anand Classes, perfect for CBSE and JEE aspirants aiming for strong fundamentals.


NCERT Question.4 : Find the projection of the vector
$\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}\;$ on the vector $\vec{b} = 7\hat{i} – \hat{j} + 8\hat{k}$

Solution
First, let’s find the dot product of given vectors.
Dot Product

$$\vec{a} \cdot \vec{b} = (1 \cdot 7) + (3 \cdot -1) + (7 \cdot 8)$$

$$\vec{a} \cdot \vec{b}= 7 – 3 + 56 = 60$$

Magnitude of $\vec{b}$

$$|\vec{b}| = \sqrt{7^2 + (-1)^2 + 8^2}$$

$$|\vec{b}|= \sqrt{49 + 1 + 64} = \sqrt{114}$$

Projection of $\vec{a}$ on $\vec{b}$

Using
$$\text{Projection}_{\vec{b}}(\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\vec{b}$$

Since
$$|\vec{b}|^2 = 114$$

$$\text{Projection}_{\vec{b}}(\vec{a}) = \frac{60}{114}\vec{b}$$

Thus,
$$\text{Projection}_{\vec{b}}(\vec{a}) = \frac{60}{114}(7\hat{i} – \hat{j} + 8\hat{k})$$

Final Result

$$\boxed{\text{Projection}_{\vec{b}}(\vec{a}) = \frac{60}{114}(7\hat{i} – \hat{j} + 8\hat{k})}$$

For clear and reliable vector algebra solutions, explore the beautifully structured notes and solved examples from Anand Classes, ideal for strengthening CBSE and JEE preparation.


NCERT Question.5 : Show that each of the given three vectors is a unit vector:
$ \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k}),
\frac{1}{7}(3\hat{i} – 6\hat{j} + 2\hat{k}),
\frac{1}{7}(6\hat{i} + 2\hat{j} – 3\hat{k}) $
Also show that they are mutually perpendicular.

Solution
Let
$$ \vec{v_1} = \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k}) $$

$$ \vec{v_2} = \frac{1}{7}(3\hat{i} – 6\hat{j} + 2\hat{k}) $$

$$ \vec{v_3} = \frac{1}{7}(6\hat{i} + 2\hat{j} – 3\hat{k}) $$

Checking if each vector is a unit vector

For $( \vec{v_1} )$:

$$ |\vec{v_1}| = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2} $$

$$ |\vec{v_1}| = \sqrt{\frac{4 + 9 + 36}{49}} = \sqrt{\frac{49}{49}} = 1 $$

For $( \vec{v_2} )$:

$$ |\vec{v_2}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(\frac{-6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} $$

$$ |\vec{v_2}| = \sqrt{\frac{9 + 36 + 4}{49}} = \sqrt{\frac{49}{49}} = 1 $$

For $( \vec{v_3} )$:

$$ |\vec{v_3}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(\frac{-3}{7}\right)^2} $$

$$ |\vec{v_3}| = \sqrt{\frac{36 + 4 + 9}{49}} = \sqrt{\frac{49}{49}} = 1 $$

Thus all three vectors are unit vectors.

Showing they are mutually perpendicular

Vectors are perpendicular if their dot product is zero.

$( \vec{v_1} \cdot \vec{v_2} )$ :

$$ \vec{v_1} \cdot \vec{v_2} = \frac{2}{7}\frac{3}{7} + \frac{3}{7}\frac{-6}{7} + \frac{6}{7}\frac{2}{7} $$

$$ \vec{v_1} \cdot \vec{v_2}= \frac{6 – 18 + 12}{49} = 0 $$

$( \vec{v_1} \cdot \vec{v_3} ) :$

$$ \vec{v_1} \cdot \vec{v_3} = \frac{2}{7}\frac{6}{7} + \frac{3}{7}\frac{2}{7} + \frac{6}{7}\frac{-3}{7} $$

$$ \vec{v_1} \cdot \vec{v_3}= \frac{12 + 6 – 18}{49} = 0 $$

$( \vec{v_2} \cdot \vec{v_3} ) :$

$$ \vec{v_2} \cdot \vec{v_3} = \frac{3}{7}\frac{6}{7} + \frac{-6}{7}\frac{2}{7} + \frac{2}{7}\frac{-3}{7} $$

$$ \vec{v_2} \cdot \vec{v_3}= \frac{18 – 12 – 6}{49} = 0 $$

Final Result

All three vectors are unit vectors, and they are mutually perpendicular to each other.

$$ \boxed{\text{All three vectors are mutually perpendicular unit vectors}} $$

Enhance your preparation with beautifully structured vector algebra notes and solved examples by Anand Classes, perfect for CBSE and JEE students looking for clear step-wise explanations and high-quality study material.


NCERT Question.6 : Find $|\vec{a}|$ and $|\vec{b}|$ if
$(\vec{a} + \vec{b}) \cdot (\vec{a} – \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|.$

Solution
Given
$$(\vec{a} + \vec{b}) \cdot (\vec{a} – \vec{b}) = 8$$

Expand the dot product:

$$\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} – \vec{a} \cdot \vec{b} – \vec{b} \cdot \vec{b} = 8$$

Since $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$, the middle terms cancel:

$$|\vec{a}|^2 – |\vec{b}|^2 = 8$$

Given
$$|\vec{a}| = 8|\vec{b}|$$

so
$$|\vec{a}|^2 = 64|\vec{b}|^2.$$

Substitute:

$$64|\vec{b}|^2 – |\vec{b}|^2 = 8$$

$$63|\vec{b}|^2 = 8$$

$$|\vec{b}|^2 = \frac{8}{63}$$

Thus,

$$|\vec{b}| = \frac{2\sqrt{2}}{3\sqrt{7}}$$

and

$$|\vec{a}| = 8|\vec{b}| = 8\sqrt{\frac{8}{63}}.$$

Simplify:

$$|\vec{a}| = \frac{16\sqrt{2}}{3\sqrt{7}}.$$

Final Result

$$\boxed{|\vec{b}| = \frac{2\sqrt{2}}{3\sqrt{7}} \quad,\quad |\vec{a}| = \frac{16\sqrt{2}}{3\sqrt{7}}}$$

Strengthen your vector algebra skills with detailed, step-by-step solutions from Anand Classes, ideal for CBSE and JEE preparation and perfect for scoring high with clear conceptual understanding.


NCERT Question.7 : Evaluate the product
$$(3\vec{a} – 5\vec{b}) \cdot (2\vec{a} + 7\vec{b}).$$

Solution
Expand the dot product:

$$
(3\vec{a} – 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})= 3\vec{a} \cdot 2\vec{a} + 3\vec{a} \cdot 7\vec{b} – 5\vec{b} \cdot 2\vec{a} – 5\vec{b} \cdot 7\vec{b}
$$

Apply dot product properties:

$$
(3\vec{a} – 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})= 6|\vec{a}|^2 + 21|\vec{a}||\vec{b}| – 10|\vec{a}||\vec{b}| – 35|\vec{b}|^2
$$

Combine like terms:

$$
(3\vec{a} – 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})= 6|\vec{a}|^2 + 11|\vec{a}||\vec{b}| – 35|\vec{b}|^2
$$

Final Result

$$\boxed{6|\vec{a}|^2 + 11|\vec{a}||\vec{b}| – 35|\vec{b}|^2}$$

For crystal clear explanations and JEE plus CBSE focused vector algebra practice, explore the high quality study material from Anand Classes to boost your preparation with confidence.


NCERT Question.8 : Find the magnitude of two vectors $\vec{a}$ and $\vec{b}$ having the same magnitude, such that the angle between them is $60^\circ$ and their scalar product is $\dfrac12$.

Solution
Using the scalar product formula:

$$
\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta
$$

Let the common magnitude be

$$
|\vec{a}| = |\vec{b}| = x
$$

Given:

$$
\vec{a} \cdot \vec{b} = \frac12
$$

and

$$
\cos 60^\circ = \frac12
$$

Substitute:

$$
\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta
$$

$$
\frac12 = x \cdot x \cdot \frac12
$$

$$
\frac12 = \frac{x^2}{2}
$$

Multiply both sides by 2:

$$
1 = x^2
$$

Take square root:

$$
x = 1
$$

Hence

$$|\vec{a}| = |\vec{b}| = 1$$

Final Result

$$\boxed{|\vec{a}| = |\vec{b}| = 1}$$

Strengthen your understanding of vector algebra with the expertly curated study material from Anand Classes, ideal for CBSE and JEE aspirants aiming for top performance.


NCERT Question.9 : Find $|\vec{x}|$ if for a unit vector $\vec{a}$,
$$(\vec{x} – \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$$

Solution
Expand the dot product:

$$
(\vec{x} – \vec{a}) \cdot (\vec{x} + \vec{a})= \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} – \vec{a} \cdot \vec{x} – \vec{a} \cdot \vec{a}
$$

Since $\vec{x} \cdot \vec{a} = \vec{a} \cdot \vec{x}$, these two terms cancel:

$$
(\vec{x} – \vec{a}) \cdot (\vec{x} + \vec{a})=|\vec{x}|^2 – |\vec{a}|^2 = 12
$$

Given:

$$
|\vec{a}| = 1
$$

Substitute:

$$
|\vec{x}|^2 – 1 = 12
$$

$$
|\vec{x}|^2 = 13
$$

Take square root:

$$
|\vec{x}| = \sqrt{13}
$$

Final Result

$$\boxed{|\vec{x}| = \sqrt{13}}$$

For clear, exam-focused vector algebra explanations and step-by-step NCERT solutions, explore the high-quality notes and resources from Anand Classes, perfect for CBSE and JEE preparation.

⬅️ NCERT Solutions Exercise 10.3 (Set-2) NCERT Solutions Exercise 10.2 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS