Vector Algebra NCERT Solutions Exercise 10.2 Chapter-10 Class 12 Math Notes PDF Free Download (Set-1)

โญโญโญโญโญ (5/5 from 37981 reviews)

NCERT Solutions for Exercise 10.2 of Chapter 10 Vector Algebra for Class 12 Mathematics


NCERT Question.1 : Compute the magnitude of the following vectors
$$
\vec{a}= \hat{i}+\hat{j}+\hat{k},\;\;\;\vec{b}= 2\hat{i}-7\hat{j}-3\hat{k},\;\;\;
\vec{c}= \frac{1}{\sqrt{3}}\hat{i}+\frac{1}{\sqrt{3}}\hat{j}-\frac{1}{\sqrt{3}}\hat{k}
$$

Solution
Using the magnitude formula for vector

$$\vec{v}= x\hat{i}+y\hat{j}+z\hat{k}$$

$$|\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}}$$

For $\vec{a}$:
$$|\vec{a}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$$

For $\vec{b}$:
$$|\vec{b}|=\sqrt{(2)^{2}+(-7)^{2}+(-3)^{2}}$$

$$|\vec{b}|=\sqrt{4+49+9}=\sqrt{62}$$

For $\vec{c}$:
$$|\vec{c}|=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}}$$

$$|\vec{c}|=\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=\sqrt{1}=1$$

Enhance your understanding of vector algebra with comprehensive notes and solved examples from Anand Classes, ideal for CBSE and competitive exam preparation, offering clear concepts and high-quality practice material.


NCERT Question.2 : Write two different vectors having the same magnitude.

Solution :
An infinite number of such vectors are possible. One example is:

$$
\vec{a}= \hat{i}+2\hat{j}-3\hat{k}
$$

$$
\vec{b}= 2\hat{i}-\hat{j}-3\hat{k}
$$

Magnitude of $\vec{a}$:

$$
|\vec{a}|= \sqrt{1^{2}+(-2)^{2}+(-3)^{2}}
$$

$$
|\vec{a}|=\sqrt{1+4+9}=\sqrt{14}
$$

Magnitude of $\vec{b}$:

$$
|\vec{b}|= \sqrt{(2)^{2}+(-1)^{2}+(-3)^{2}}
$$

$$
|\vec{b}|=\sqrt{4+1+9}=\sqrt{14}
$$

Thus,

$$
|\vec{a}| = |\vec{b}|
$$

but

$$
\vec{a} \ne \vec{b}
$$

Remark. In this way, we can construct an infinite number of possible answers.

Upgrade your vector algebra preparation with clear stepwise solutions and high quality notes from Anand Classes, ideal for CBSE and competitive examinations with well designed examples to build strong fundamentals.


NCERT Question.3 : Write two different vectors having the same direction.

Solution
Let
$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \tag{i}$$

and
$$\vec{b} = 2(\hat{i} + 2\hat{j} + 3\hat{k}) \tag{ii}$$

From (i),
$$\vec{b} = 2\vec{a}$$

Thus,
$$\vec{b} = m\vec{a} \quad \text{where } m = 2 > 0.$$

Direction of Vectors

Since $\vec{b} = 2\vec{a}$, the vectors $\vec{a}$ and $\vec{b}$ have the same direction.

But
$$\vec{b} \ne \vec{a}$$

because
$$|\vec{b}| = |2||\vec{a}| = 2|\vec{a}| .$$

Hence

$$|\vec{b} | \ne |\vec{a}|.$$

Remark
In this manner, we can construct infinitely many possible answers.
An infinite number of such vectors are possible.

In terms of direction cosines

$$
\vec{a}= \hat{i}+\hat{j}+\hat{k}
$$

$$
\vec{b}= 2\hat{i}+2\hat{j}+2\hat{k}
$$

Direction Cosines of $\vec{a}$

$$
\ell=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
$$

$$
m=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
$$

$$
n=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
$$

Direction Cosines of $\vec{b}$

$$
\ell=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{\sqrt{12}}=\frac{1}{\sqrt{3}}
$$

$$
m=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{1}{\sqrt{3}}
$$

$$
n=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{1}{\sqrt{3}}
$$

This shows that both vectors $\vec{a}$ and $\vec{b}$ have the same direction, even though

$$
\vec{a}\ne \vec{b}
$$

Build strong fundamentals in vectors with clear explanations, solved questions, and well-structured notes from Anand Classes, ideal for CBSE and competitive exam preparation.


NCERT Question.4 : Find the values of $x$ and $y$ so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal.

Solution
Since the vectors are equal
$$x\hat{i} + y\hat{j} = 2\hat{i} + 3\hat{j}$$

Comparing coefficients of $\hat{i}$ and $\hat{j}$ on both sides, we have

$$ x = 2, \quad y = 3 $$

Final Result
$$\boxed{x = 2,\ y = 3}$$

Strengthen your vector concepts with more practice resources and detailed notes prepared by Anand Classes, ideal for CBSE and competitive exam preparation.


NCERT Question.5 : Find the scalar and vector components of the vector with initial point $(2, 1)$ and terminal point $(-5, 7)$.

Solution
Let the initial point be $P(2, 1)$ and the terminal point be $Q(-5, 7)$.
The position vectors are
$$\overrightarrow{OP} = 2\hat{i} + \hat{j}$$

$$\overrightarrow{OQ} = -5\hat{i} + 7\hat{j}$$

Now,
$$\overrightarrow{PQ} = \overrightarrow{OQ} – \overrightarrow{OP}$$

$$\overrightarrow{PQ} =(-5\hat{i} + 7\hat{j})-(2\hat{i} + \hat{j})$$

So,
$$\overrightarrow{PQ} = (-5 – 2)\hat{i} + (7 – 1)\hat{j}$$

$$\overrightarrow{PQ} = -7\hat{i} + 6\hat{j}$$

Thus,

  • Scalar components: $-7$ and $6$
  • Vector components: $-7\hat{i}$ and $6\hat{j}$

Final Result
$$\boxed{\overrightarrow{PQ} = -7\hat{i} + 6\hat{j}}$$

Boost your understanding of vectors with well-structured notes and solved examples from Anand Classes, perfect for CBSE and competitive exam preparation.


NCERT Question.6 : Find the sum of the vectors
$\vec{a} = \hat{i} – 2\hat{j} + \hat{k},\;\;\;
\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k},\;\;\;
\vec{c} = \hat{i} – 6\hat{j} – 7\hat{k}$

Solution
Given Vectors are :

$\vec{a} = \hat{i} – 2\hat{j} + \hat{k},\;\;\;
\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k},\;\;\;
\vec{c} = \hat{i} – 6\hat{j} – 7\hat{k}$

$$\vec{a} + \vec{b} + \vec{c} =(\hat{i} – 2\hat{j} + \hat{k})+(-2\hat{i} + 4\hat{j} + 5\hat{k})+(\hat{i} – 6\hat{j} – 7\hat{k})$$

Add the corresponding $\hat{i}, \hat{j} $ and $\hat{k}$ components.

$$\vec{a} + \vec{b} + \vec{c} = (1 – 2 + 1)\hat{i} + (-2 + 4 – 6)\hat{j} + (1 + 5 – 7)\hat{k}$$

Simplifying:

$$\vec{a} + \vec{b} + \vec{c} = 0\hat{i} – 4\hat{j} – 1\hat{k}=-4\hat{j} – \hat{k}$$

Thus,

Final Result
$$\boxed{-4\hat{j} – \hat{k}}$$

Strengthen your vector algebra skills with detailed notes and solved questions from Anand Classes, ideal for CBSE, JEE, and other competitive exams.


NCERT Question.7 : Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$

Solution
Given
$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$

First find the magnitude of $\vec{a}$

$$|\vec{a}| = \sqrt{1^2 + 1^2 + 2^2}$$

$$|\vec{a}| = \sqrt{6}$$

The unit vector is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$

Thus

$$\hat{a} = \frac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}}$$

$$\hat{a} = \frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

Final Result
$$\boxed{\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}}$$

Boost your preparation with high quality notes and clear vector explanations from Anand Classes, perfect for CBSE and JEE competitive exam practice.


NCERT Question.8 : Find the unit vector in the direction of vector $\overrightarrow{PQ}$, where $P(1,2,3)$ and $Q(4,5,6)$.

Solution
The points are
$P(1,2,3)$ and $Q(4,5,6)$.

The vector
$$\overrightarrow{PQ} = \overrightarrow{OQ} – \overrightarrow{OP}$$

Compute components:

$$\overrightarrow{PQ} = (4-1)\hat{i} + (5-2)\hat{j} + (6-3)\hat{k}$$

$$\overrightarrow{PQ} = 3\hat{i} + 3\hat{j} + 3\hat{k}$$

Next compute its magnitude:

$$|\overrightarrow{PQ}| = \sqrt{3^2 + 3^2 + 3^2}$$

$$|\overrightarrow{PQ}| = \sqrt{27} = 3\sqrt{3}$$

Unit vector along $ \overrightarrow{PQ} $:

$$\widehat{PQ} = \frac{\overrightarrow{PQ}}{|\overrightarrow{PQ}|}$$

$$\widehat{PQ} = \frac{3\hat{i} + 3\hat{j} + 3\hat{k}}{3\sqrt{3}}$$

$$\widehat{PQ} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

Final Result
$$\boxed{\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}}$$

Strengthen your understanding of vectors with Anand Classesโ€™ comprehensive study notes, ideal for CBSE and JEE students aiming for top results.


NCERT Question.9 : For the vectors
$\vec{a} = 2\hat{i} – \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} – \hat{k}$.
Find the unit vector in the direction of $\vec{a} + \vec{b}$.

Solution
Given
$$\vec{a}=2\hat{i}-\hat{j}+2\hat{k}$$

$$\vec{b}=-\hat{i}+\hat{j}-\hat{k}$$

Add the vectors:
$$\vec{a}+\vec{b}=(2-1)\hat{i}+(-1+1)\hat{j}+(2-1)\hat{k}$$

$$\vec{a}+\vec{b}=\hat{i}+0\hat{j}+\hat{k}$$

$$\vec{a}+\vec{b}=\hat{i}+\hat{k}$$

Magnitude:
$$|\vec{a}+\vec{b}|=\sqrt{1^2+1^2}=\sqrt{2}$$

Unit vector:
$$\widehat{a+b}=\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}$$

$$\widehat{a+b}=\frac{\hat{i}+\hat{k}}{\sqrt{2}}$$

Final Result
$$\boxed{\frac{1}{\sqrt{2}}\hat{i}+\frac{1}{\sqrt{2}}\hat{k}}$$

Strengthen your vector algebra skills with expertly crafted notes from Anand Classes, ideal for CBSE and JEE aspirants.


NCERT Question.10 : Find a vector in the direction of the vector
$\vec{a} = 5\hat{i} – \hat{j} + 2\hat{k}$, which has a magnitude of 8 units.

Solution
Given:
$$\vec{a} = 5\hat{i} – \hat{j} + 2\hat{k}$$

Magnitude of $\vec{a}$:
$$|\vec{a}| = \sqrt{5^2 + (-1)^2 + 2^2}$$

$$|\vec{a}| = \sqrt{25 + 1 + 4}$$

$$|\vec{a}| = \sqrt{30}$$

Unit vector in the direction of $\vec{a}$:
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{5\hat{i} – \hat{j} + 2\hat{k}}{\sqrt{30}}$$

A vector parallel to $\vec{a}$ with magnitude 8 is:
$$8\hat{a} = 8 \cdot \frac{5\hat{i} – \hat{j} + 2\hat{k}}{\sqrt{30}}$$

Simplifying:
$$8\hat{a} = \frac{40}{\sqrt{30}}\hat{i} – \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

Final Result
$$\boxed{\frac{40}{\sqrt{30}}\hat{i} – \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}}$$

Enhance your understanding of vectors and unit vectors with Anand Classesโ€™ detailed step-by-step notes, perfect for CBSE and competitive exams.

โฌ…๏ธ NCERT Solutions Exercise 10.3 (Set-1) NCERT Solutions Exercise 10.2 (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS