Integrals NCERT Solutions Exercise 7.8 Chapter-7 Class 12 Math Notes PDF Free Download (Set-1)

โญโญโญโญโญ (5/5 from 67436 reviews)

NCERT Question 1: Evaluate the integral
$$\int_{-1}^{1}(x+1)\;dx$$

Solution
Let
$$I=\int_{-1}^{1}(x+1)\;dx$$

First find the antiderivative:
$$\int(x+1)\;dx=\frac{x^{2}}{2}+x$$

Apply the Second Fundamental Theorem of Calculus:
$$I=\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}$$

Substitute the limits:
$$I=\left(\frac{1^{2}}{2}+1\right)-\left(\frac{(-1)^{2}}{2}-1\right)$$

Simplify:
$$I=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)$$
$$I=\frac{1}{2}+1-\frac{1}{2}+1$$
$$I=2$$

Final Answer
$$\boxed{2}$$

Discover more expertly formatted solutions and step-by-step explanations with Anand Classes โ€” perfect for strengthening calculus concepts and ideal for CBSE and JEE preparation.


NCERT Question 2: Evaluate the integral
$$\int_{2}^{3}\frac{1}{x}\;dx$$

Solution

Let
$$I=\int_{2}^{3}\frac{1}{x}\;dx$$

The antiderivative is
$$\int\frac{1}{x}\;dx=\log\lvert x\rvert$$

Apply the Second Fundamental Theorem of Calculus:
$$I=\left[\log\lvert x\rvert\right]_{2}^{3}$$

Substitute the limits:
$$I=\log 3-\log 2$$

Using log properties:
$$I=\log\left(\frac{3}{2}\right)$$

Final Answer
$$\boxed{\log\left(\frac{3}{2}\right)}$$

Enhance your understanding of definite integrals with expertly structured solutions from Anand Classes โ€” ideal for CBSE, JEE preparation, and quick concept revision.


NCERT Question 3: Evaluate the integral
$$\int_{1}^{2}\left(4x^{3}-5x^{2}+6x+9\right)\;dx$$

Solution

Let
$$I=\int_{1}^{2}\left(4x^{3}-5x^{2}+6x+9\right)\;dx$$

Find the antiderivative:
$$\int\left(4x^{3}-5x^{2}+6x+9\right)\;dx
= x^{4}-\frac{5x^{3}}{3}+3x^{2}+9x$$

Thus,
$$I=\left[x^{4}-\frac{5x^{3}}{3}+3x^{2}+9x\right]_{1}^{2}$$

Substitute upper limit:
$$2^{4}-\frac{5(2^{3})}{3}+3(2^{2})+9(2)
=16-\frac{40}{3}+12+18$$

Substitute lower limit:
$$1^{4}-\frac{5(1^{3})}{3}+3(1^{2})+9(1)
=1-\frac{5}{3}+3+9$$

Now compute the difference:
$$I=\left(16-\frac{40}{3}+12+18\right)-\left(1-\frac{5}{3}+3+9\right)$$

Simplify:
$$I=33-\frac{35}{3}$$

Write with a common denominator:
$$I=\frac{99-35}{3}$$

$$I=\frac{64}{3}$$

Final Answer
$$\boxed{\frac{64}{3}}$$

Strengthen your integral calculus skills with detailed solutions from Anand Classes โ€” perfect for CBSE boards, JEE aspirants, and students seeking clear step-by-step guidance.


NCERT Question 4: Evaluate the integral
$$\int_{0}^{\dfrac{\pi}{4}} \sin 2x\;dx$$

Solution

Let
$$I=\int_{0}^{\dfrac{\pi}{4}}\sin 2x\;dx$$

Find the antiderivative:
$$\int \sin 2x\;dx = -\frac{\cos 2x}{2}$$

Thus,
$$I=\left[-\frac{\cos 2x}{2}\right]_{0}^{\dfrac{\pi}{4}}$$

Substitute the limits:
$$I=-\frac{1}{2}\left[\cos\left(2\cdot\frac{\pi}{4}\right)-\cos(0)\right]$$

Simplify inside the bracket:
$$I=-\frac{1}{2}\left[\cos\left(\frac{\pi}{2}\right)-\cos(0)\right]$$

Since
$$\cos\left(\frac{\pi}{2}\right)=0 \quad\text{and}\quad \cos(0)=1,$$

we get
$$I=-\frac{1}{2}(0-1)=\frac{1}{2}$$

Final Answer
$$\boxed{\frac{1}{2}}$$

Master definite integrals effortlessly with structured step-by-step solutions from Anand Classes โ€” ideal for strengthening CBSE and JEE preparation.


NCERT Question 5: Evaluate the integral
$$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \cos 2x\;dx$$

Solution

Antiderivative:
$$\int \cos 2x\;dx = \frac{1}{2}\sin 2x$$

Evaluate from $0$ to $\dfrac{\pi}{2}$:
$$\displaystyle I=\left[\frac{1}{2}\sin 2x\right]_{0}^{\dfrac{\pi}{2}}
=\frac{1}{2}\bigl(\sin\pi-\sin 0\bigr)$$

Since $\sin\pi=0$ and $\sin 0=0$,
$$I=\frac{1}{2}(0-0)=0$$

Final Answer
$$\boxed{0}$$


NCERT Question 6: Evaluate the integral
$$\displaystyle \int_{4}^{5} e^{x}\;dx$$

Solution

Antiderivative:
$$\int e^{x}\;dx = e^{x}$$

Evaluate from $4$ to $5$:
$$\displaystyle I=\bigl[e^{x}\bigr]_{4}^{5}=e^{5}-e^{4} = e^{4}(e-1)$$

Final Answer
$$\boxed{e^{5}-e^{4}=e^{4}(e-1)}$$


NCERT Question 7: Evaluate the integral
$$\displaystyle \int_{0}^{\dfrac{\pi}{4}} \tan x\;dx$$

Solution

Antiderivative:
$$\int \tan x\;dx = -\ln\lvert\cos x\rvert$$

Evaluate from $0$ to $\dfrac{\pi}{4}$:
$$\displaystyle I=\left[-\ln\lvert\cos x\rvert\right]_{0}^{\frac{\pi}{4}}
=-\ln\bigl(\cos\frac{\pi}{4}\bigr)+\ln\bigl(\cos 0\bigr)$$

Now $\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}$ and $\cos 0=1$, so
$$I=-\ln\left(\frac{1}{\sqrt{2}}\right)+\ln 1
=-\bigl(-\frac{1}{2}\ln 2\bigr)+0=\frac{1}{2}\ln 2$$

Final Answer
$$\boxed{\frac{1}{2}\ln 2}$$


NCERT Question 8: Evaluate the integral
$$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x\;dx$$

Solution

Antiderivative:
$$\int \csc x\;dx = \ln!\bigl|\csc x-\cot x\bigr| + C$$

Evaluate from $\tfrac{\pi}{6}$ to $\tfrac{\pi}{4}$:
$$\displaystyle I=\left[\ln!\bigl|\csc x-\cot x\bigr|\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}
=\ln!\bigl(\csc\tfrac{\pi}{4}-\cot\tfrac{\pi}{4}\bigr)
-\ln!\bigl(\csc\tfrac{\pi}{6}-\cot\tfrac{\pi}{6}\bigr)$$

Compute values:
$$\csc\tfrac{\pi}{4}=\sqrt{2},\quad \cot\tfrac{\pi}{4}=1\quad\Rightarrow\quad \csc\tfrac{\pi}{4}-\cot\tfrac{\pi}{4}=\sqrt{2}-1$$
$$\csc\tfrac{\pi}{6}=2,\quad \cot\tfrac{\pi}{6}=\sqrt{3}\quad\Rightarrow\quad \csc\tfrac{\pi}{6}-\cot\tfrac{\pi}{6}=2-\sqrt{3}$$

So
$$\displaystyle I=\ln\frac{\sqrt{2}-1}{2-\sqrt{3}}$$

(you may leave it as above or combine into a single logarithm)

Final Answer
$$\boxed{\displaystyle \ln\frac{\sqrt{2}-1}{2-\sqrt{3}}}$$

Improve your NCERT practice with neatly typeset worked solutions and downloadable notes from Anand Classes โ€” perfect for fast revision before CBSE and JEE exams.


NCERT Question 9: Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}$$

Solution

An antiderivative of the integrand is the inverse sine function:
$$\int \frac{dx}{\sqrt{1-x^{2}}}=\sin^{-1}x + C.$$

Apply the limits $0$ to $1$:
$$\displaystyle I=\left[\sin^{-1}x\right]_{0}^{1}=\sin^{-1}(1)-\sin^{-1}(0).$$

Evaluate the values:
$$\sin^{-1}(1)=\frac{\pi}{2},\qquad \sin^{-1}(0)=0.$$

So
$$\displaystyle I=\frac{\pi}{2}-0=\frac{\pi}{2}.$$

Final Answer
$$\boxed{\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}}$$

Download neatly formatted, exam-ready notes by Anand Classes โ€” perfect for CBSE revision and JEE practice.


NCERT Question 10: Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{dx}{1+x^{2}}$$

Solution

An antiderivative is
$$\int\frac{dx}{1+x^{2}}=\tan^{-1}x + C.$$

Apply the limits:
$$\left[\tan^{-1}x\right]_{0}^{1}=\tan^{-1}(1)-\tan^{-1}(0)=\frac{\pi}{4}-0=\frac{\pi}{4}.$$

Final Answer
$$\boxed{\displaystyle \frac{\pi}{4}}$$


NCERT Question 11: Evaluate the integral
$$\displaystyle \int_{2}^{3}\frac{dx}{x^{2}-1}$$

Solution

An antiderivative is
$$\int\frac{dx}{x^{2}-1}=\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|+C.$$

Evaluate from $2$ to $3$:
$$\frac{1}{2}\ln\left|\frac{3-1}{3+1}\right|
-\frac{1}{2}\ln\left|\frac{2-1}{2+1}\right|
=\frac{1}{2}\ln\frac{2/4}{1/3}
=\frac{1}{2}\ln\frac{3}{2}.$$

Final Answer
$$\boxed{\displaystyle \frac{1}{2}\ln\left(\frac{3}{2}\right)}$$

Strengthen your NCERT practice with neatly typeset solutions and more worked examples from Anand Classes โ€” downloadable notes and step-by-step explanations ideal for CBSE and JEE revision.

โฌ…๏ธ NCERT Solutions Exercise 7.8 (Set-2) NCERT Solutions Exercise 7.7 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS