Integrals NCERT Solutions Exercise 7.6 Chapter-7 Class 12 Math PDF Free Download (Set-1)

โญโญโญโญโญ (5/5 from 82971 reviews)

NCERT Question 1: Evaluate the integral
$$\int x\sin x\; dx$$

Solution
Let
$$f(x)=\int x\sin x\; dx$$

Choose $x$ as the first function and $\sin x$ as the second function. Using integration by parts,
$$\int x\sin x\; dx = x\int \sin x\; dx – \int \left(\frac{d(x)}{dx}\right)\left(\int \sin x\; dx\right)\; dx$$

Compute the inner integral:
$$\int \sin x\; dx = -\cos x$$

Substituting,
$$f(x)= x(-\cos x) – \int 1(-\cos x)\; dx$$

This simplifies to
$$f(x)= -x\cos x + \int \cos x\; dx$$

Evaluate the remaining integral:
$$\int \cos x\; dx = \sin x$$

Hence,
$$f(x)= -x\cos x + \sin x + C$$

Final Answer

$$\boxed{-x\cos x + \sin x + C}$$

Strengthen your understanding of integration with detailed study notes and solved examples from Anand Classesโ€”high-quality material ideal for CBSE and JEE aspirants.


NCERT Question 2: Evaluate the integral
$$\int x\sin 3x\; dx$$

Solution
Let
$$f(x)=\int x\sin 3x\; dx$$

Take $x$ as the first function and $\sin 3x$ as the second function. Using integration by parts,
$$\int x\sin 3x\; dx = x\int \sin 3x\; dx – \int \left(\frac{d(x)}{dx}\right)\left(\int \sin 3x\; dx\right)\; dx$$

Compute the inner integral:
$$\int \sin 3x\; dx = -\frac{\cos 3x}{3}$$

Substituting,
$$f(x)= x\left(-\frac{\cos 3x}{3}\right) – \int 1\left(-\frac{\cos 3x}{3}\right)\; dx$$

This becomes
$$f(x)= -\frac{x\cos 3x}{3} + \frac{1}{3}\int \cos 3x\; dx$$

Now evaluate the remaining integral:
$$\int \cos 3x\; dx = \frac{\sin 3x}{3}$$

Substitute back:
$$f(x)= -\frac{x\cos 3x}{3} + \frac{1}{9}\sin 3x + C$$

Final Answer

$$\boxed{-\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + C}$$

For more detailed solved integrals and concept-strengthening notes, explore comprehensive study material by Anand Classesโ€”perfect for CBSE and JEE exam preparation.


NCERT Question 3: Evaluate the integral
$$\int x^{2} e^{x}\; dx$$

Solution
Let
$$f(x)=\int x^{2} e^{x}\; dx$$

Choose $x^{2}$ as the first function and $e^{x}$ as the second function. Using integration by parts,
$$\int x^{2} e^{x}\; dx = x^{2}\int e^{x}\; dx – \int \left(\frac{d(x^{2})}{dx}\right)\left(\int e^{x}\; dx\right)\; dx$$

Evaluate the inner integral:
$$\int e^{x}\; dx = e^{x}$$

Substitute:
$$f(x)= x^{2} e^{x} – \int 2x e^{x}\; dx$$

So,
$$f(x)= x^{2} e^{x} – 2\int x e^{x}\; dx$$

Now evaluate $\int x e^{x}\; dx$ by integration by parts again.
Let $u=x$ and $dv=e^{x}\; dx$, then
$$\int x e^{x}\; dx = x e^{x} – \int e^{x}\; dx$$
$$= x e^{x} – e^{x}$$

Substitute back:
$$f(x)= x^{2} e^{x} – 2\left(x e^{x} – e^{x}\right)$$

Simplify:
$$f(x)= x^{2} e^{x} – 2x e^{x} + 2 e^{x} + C$$

Factor out $e^{x}$:
$$f(x)= e^{x}(x^{2} – 2x + 2) + C$$

Final Answer

$$\boxed{e^{x}(x^{2}-2x+2) + C}$$

Access high-quality step-by-step integration notes and exam-oriented material from Anand Classesโ€”ideal for scoring higher in CBSE and JEE mathematics.


NCERT Question 4: Evaluate the integral
$$\int x\log x\; dx$$

Solution
Let
$$f(x)=\int x\log x\; dx$$

Take $\log x$ as the first function and $x$ as the second function. Using integration by parts,
$$\int x\log x\; dx = \log x\int x\; dx – \int \left(\frac{d(\log x)}{dx}\right)\left(\int x\; dx\right)\; dx$$

Evaluate the inner integral:
$$\int x\; dx = \frac{x^{2}}{2}$$

Also,
$$\frac{d(\log x)}{dx} = \frac{1}{x}$$

Substitute these into the expression:
$$f(x)= \log x\left(\frac{x^{2}}{2}\right) – \int \frac{1}{x}\left(\frac{x^{2}}{2}\right)\; dx$$

Simplify inside the integral:
$$\frac{x^{2}}{2}\cdot\frac{1}{x}=\frac{x}{2}$$

So,
$$f(x)= \frac{x^{2}\log x}{2} – \int \frac{x}{2}\; dx$$

Integrate the remaining term:
$$\int \frac{x}{2}\; dx = \frac{x^{2}}{4}$$

Thus,
$$f(x)= \frac{x^{2}\log x}{2} – \frac{x^{2}}{4} + C$$

Final Answer

$$\boxed{\frac{x^{2}\log x}{2} – \frac{x^{2}}{4} + C}$$

Boost your mastery of integration techniques with detailed notes and solved problems from Anand Classesโ€”excellent for CBSE Boards and JEE aspirants aiming for strong conceptual clarity.


NCERT Question 5: Evaluate the integral
$$\int x\log 2x\; dx$$

Solution
Let
$$f(x)=\int x\log 2x\; dx$$

Take $\log 2x$ as the first function and $x$ as the second function. Using integration by parts,
$$\int x\log 2x\; dx = \log 2x\int x\; dx – \int \left(\frac{d(\log 2x)}{dx}\right)\left(\int x\; dx\right)\; dx$$

Evaluate the inner integral:
$$\int x\; dx = \frac{x^{2}}{2}$$

Differentiate the first function:
$$\frac{d(\log 2x)}{dx} = \frac{1}{2x}\times2=\frac{1}{x}$$

Substituting these results:
$$f(x)= \log 2x\left(\frac{x^{2}}{2}\right) – \int \frac{1}{x}\left(\frac{x^{2}}{2}\right)\; dx$$

Simplify inside the integral:
$$\frac{x^{2}}{2}\cdot\frac{1}{x}=\frac{x}{2}$$

Thus,
$$f(x)= \frac{x^{2}\log 2x}{2} – \int \frac{x}{2}\; dx$$

Integrate the remaining expression:
$$\int \frac{x}{2}\; dx = \frac{x^{2}}{4}$$

Therefore,
$$f(x)= \frac{x^{2}\log 2x}{2} \;-\; \frac{x^{2}}{4} + C$$

Final Answer

$$\boxed{\frac{x^{2}\log 2x}{2} \;-\; \frac{x^{2}}{4} + C}$$

Strengthen your integration skills with clear, exam-oriented notes from Anand Classesโ€”perfect for CBSE and JEE students aiming for accuracy and speed in mathematics.


NCERT Question 6: Evaluate the integral
$$\int x^{2}\log x\; dx$$

Solution
Let
$$f(x)=\int x^{2}\log x\; dx$$

Take $\log x$ as the first function and $x^{2}$ as the second function. Using integration by parts,
$$\int x^{2}\log x\; dx = \log x\int x^{2}\; dx \;-\; \int \left(\frac{d(\log x)}{dx}\right)\left(\int x^{2}\; dx\right)\; dx$$

Compute the inner integral:
$$\int x^{2}\; dx = \frac{x^{3}}{3}$$

Differentiate $\log x$:
$$\frac{d(\log x)}{dx}=\frac{1}{x}$$

Substitute both results:
$$f(x)= \log x\left(\frac{x^{3}}{3}\right) – \int \frac{1}{x}\left(\frac{x^{3}}{3}\right)\; dx$$

Simplify the integrand:
$$\frac{x^{3}}{3}\cdot\frac{1}{x}=\frac{x^{2}}{3}$$

So,
$$f(x)= \frac{x^{3}\log x}{3} \;-\; \int \frac{x^{2}}{3}\; dx$$

Integrate the remaining term:
$$\int \frac{x^{2}}{3}\; dx = \frac{x^{3}}{9}$$

Thus,
$$f(x)= \frac{x^{3}\log x}{3} \;-\; \frac{x^{3}}{9} + C$$

Final Answer

$$\boxed{\frac{x^{3}\log x}{3} \;-\; \frac{x^{3}}{9} + C}$$

Level up your calculus preparation with detailed, step-by-step notes and solved examples from Anand Classesโ€”ideal for building strong conceptual understanding for CBSE and JEE exams.


NCERT Question 7: Evaluate the integral
$$\int x\sin^{-1}x\;dx$$

Solution
Let
$$f(x)=\int x\sin^{-1}x\;dx$$

Choose
$$u=\sin^{-1}x$$
$$dv=x\;dx$$

Then
$$du=\frac{1}{\sqrt{1-x^{2}}}\;dx$$
$$v=\frac{x^{2}}{2}$$

Using integration by parts :
$$f(x)=uv-\int v\;du$$

So
$$f(x)=\frac{x^{2}}{2}\sin^{-1}x-\int \frac{x^{2}}{2}\cdot\frac{1}{\sqrt{1-x^{2}}}\;dx$$

Rewrite the integrand:
$$x^{2}=1-(1-x^{2})$$

Thus
$$\frac{x^{2}}{\sqrt{1-x^{2}}}=\frac{1-(1-x^{2})}{\sqrt{1-x^{2}}}
=\frac{1}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}$$

So the integral becomes
$$\int \frac{x^{2}}{\sqrt{1-x^{2}}}\;dx
=\int \frac{1}{\sqrt{1-x^{2}}}\;dx-\int \sqrt{1-x^{2}}\;dx$$

Now use the standard result
$$\int \sqrt{1-x^{2}}\;dx=\frac{x}{2}\sqrt{1-x^{2}}+\frac{1}{2}\sin^{-1}x$$

Hence
$$\int \frac{x^{2}}{\sqrt{1-x^{2}}}\;dx
=\sin^{-1}x-\left(\frac{x}{2}\sqrt{1-x^{2}}+\frac{1}{2}\sin^{-1}x\right)$$

This simplifies to
$$\frac{1}{2}\sin^{-1}x-\frac{x}{2}\sqrt{1-x^{2}}$$

Substitute back into $f(x)$:
$$f(x)=\frac{x^{2}}{2}\sin^{-1}x-\frac{1}{2}\left(\frac{1}{2}\sin^{-1}x-\frac{x}{2}\sqrt{1-x^{2}}\right)+C$$

Break into smaller parts:
$$f(x)=\frac{x^{2}}{2}\sin^{-1}x-\frac{1}{4}\sin^{-1}x+\frac{x}{4}\sqrt{1-x^{2}}+C$$

Combine the first two terms:
$$f(x)=\left(\frac{x^{2}}{2}-\frac{1}{4}\right)\sin^{-1}x+\frac{x}{4}\sqrt{1-x^{2}}+C$$

Final Answer

$$\boxed{\frac{1}{4}(2x^{2}-1)\sin^{-1}x+\frac{x}{4}\sqrt{1-x^{2}}+C}$$

For more structured, step-by-step integration solutions, explore high-quality notes from Anand Classesโ€”perfect for CBSE and JEE exam preparation.


NCERT Question 8: Evaluate the integral
$$\int x\tan^{-1}x\;dx$$

Solution
Let
$$f(x)=\int x\tan^{-1}x\;dx$$

Choose
$$u=\tan^{-1}x$$
$$dv=x\;dx$$

Then
$$du=\frac{1}{1+x^{2}}\;dx$$
$$v=\frac{x^{2}}{2}$$

By integration by parts\;
$$f(x)=uv-\int v\;du$$

So
$$f(x)=\frac{x^{2}}{2}\tan^{-1}x-\int \frac{x^{2}}{2}\cdot\frac{1}{1+x^{2}}\;dx$$

Simplify the integrand:
$$\frac{x^{2}}{1+x^{2}}=1-\frac{1}{1+x^{2}}$$

Thus the integral becomes
$$\int \frac{x^{2}}{1+x^{2}}\;dx=\int\left(1-\frac{1}{1+x^{2}}\right)\;dx$$

Evaluate the simpler integrals:
$$\int 1\;dx=x$$
$$\int \frac{1}{1+x^{2}}\;dx=\tan^{-1}x$$

Therefore
$$\int \frac{x^{2}}{1+x^{2}}\;dx=x-\tan^{-1}x$$

Substitute back into $f(x)$:
$$f(x)=\frac{x^{2}}{2}\tan^{-1}x-\frac{1}{2}\bigl(x-\tan^{-1}x\bigr)+C$$

Break into smaller parts:
$$f(x)=\frac{x^{2}}{2}\tan^{-1}x-\frac{x}{2}+\frac{1}{2}\tan^{-1}x+C$$

Combine the $\tan^{-1}x$ terms if desired:
$$f(x)=\frac{1}{2}\bigl(x^{2}+1\bigr)\tan^{-1}x-\frac{x}{2}+C$$

Final Answer

$$\boxed{\displaystyle \int x\tan^{-1}x\;dx=\frac{1}{2}\bigl(x^{2}+1\bigr)\tan^{-1}x-\frac{x}{2}+C}$$

Strengthen your exam preparation with concise\; step-by-step notes from Anand Classesโ€”ideal for CBSE and JEE aspirants seeking clear worked examples.


NCERT Question 9: Evaluate the integral
$$\int x\cos^{-1}x\;dx$$

Solution
Let
$$f(x)=\int x\cos^{-1}x\;dx$$

Choose
$$u=\cos^{-1}x$$
$$dv=x\;dx$$

Then
$$du=-\frac{1}{\sqrt{1-x^{2}}}\;dx$$
$$v=\frac{x^{2}}{2}$$

By integration by parts\;
$$f(x)=uv-\int v\;du$$

So
$$f(x)=\frac{x^{2}}{2}\cos^{-1}x+\frac{1}{2}\int\frac{x^{2}}{\sqrt{1-x^{2}}}\;dx$$

Write the integrand in simpler pieces:
$$x^{2}=1-(1-x^{2})$$

Hence

$$\frac{x^{2}}{\sqrt{1-x^{2}}}=\frac{1-(1-x^{2})}{\sqrt{1-x^{2}}}
=\frac{1}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}$$

So the integral becomes
$$\int\frac{x^{2}}{\sqrt{1-x^{2}}}\;dx
=\int\frac{1}{\sqrt{1-x^{2}}}\;dx-\int\sqrt{1-x^{2}}\;dx$$

Use the standard antiderivative
$$\int\sqrt{1-x^{2}}\;dx=\frac{x}{2}\sqrt{1-x^{2}}+\frac{1}{2}\sin^{-1}x$$

Therefore
$$\int\frac{x^{2}}{\sqrt{1-x^{2}}}\;dx
=\sin^{-1}x-\left(\frac{x}{2}\sqrt{1-x^{2}}+\frac{1}{2}\sin^{-1}x\right)$$

This simplifies to
$$\int\frac{x^{2}}{\sqrt{1-x^{2}}}\;dx
=\frac{1}{2}\sin^{-1}x-\frac{x}{2}\sqrt{1-x^{2}}$$

Substitute back into $f(x)$:
$$f(x)=\frac{x^{2}}{2}\cos^{-1}x+\frac{1}{2}\left(\frac{1}{2}\sin^{-1}x-\frac{x}{2}\sqrt{1-x^{2}}\right)+C$$

Split the terms and simplify:
$$f(x)=\frac{x^{2}}{2}\cos^{-1}x+\frac{1}{4}\sin^{-1}x-\frac{x}{4}\sqrt{1-x^{2}}+C$$

Convert $\sin^{-1}x$ to $\cos^{-1}x$ where useful using $\sin^{-1}x=\tfrac{\pi}{2}-\cos^{-1}x$ and absorb constants into $C$ to obtain the clean final form:
$$\boxed{\displaystyle f(x)=\frac{1}{4}\bigl(2x^{2}-1\bigr)\cos^{-1}x-\frac{x}{4}\sqrt{1-x^{2}}+C}$$

Deepen your practice with more worked integrals and concise notes from Anand Classesโ€”perfect for CBSE and JEE preparation.


NCERT Question 10: Evaluate the integral
$$\int (\sin^{-1}x)^{2}\;dx$$

Solution
Let
$$f(x)=\int (\sin^{-1}x)^{2}\;dx$$

Use integration by parts with
$$u=(\sin^{-1}x)^{2}$$
$$dv=dx$$

Then
$$du=2\sin^{-1}x\cdot\frac{1}{\sqrt{1-x^{2}}}\;dx$$
$$v=x$$

By parts :
$$f(x)=uv-\int v\;du$$

So
$$f(x)=x(\sin^{-1}x)^{2}-\int x\cdot 2\sin^{-1}x\cdot\frac{1}{\sqrt{1-x^{2}}}\;dx$$

Write the remaining integral as $2I$ where
$$I=\int \frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}\;dx$$

Use the substitution $x=\sin t$ so that $\sin^{-1}x=t$ and $dx=\cos t\;dt$ and $\sqrt{1-x^{2}}=\cos t$. Then the integrand becomes $t\sin t$ and
$$I=\int t\sin t\;dt$$

Integrate $I$ by parts with $u=t$, $dv=\sin t \;dt$. Then $du=dt$, $v=-\cos t$ and
$$I=-t\cos t+\int \cos t\;dt=-t\cos t+\sin t + C$$

Return to $x$ using $t=\sin^{-1}x$, $\cos t=\sqrt{1-x^{2}}$, $\sin t=x$:
$$I=-\sin^{-1}x\sqrt{1-x^{2}}+x + C$$

Therefore the original integral is
$$ f(x) =x(\sin^{-1}x)^{2}-2I + C$$

$$f(x) =x(\sin^{-1}x)^{2}-2\bigl(-\sin^{-1}x\sqrt{1-x^{2}}+x\bigr)+C$$

Split into smaller pieces and simplify:
$$f(x)=x(\sin^{-1}x)^{2}+2\sin^{-1}x\sqrt{1-x^{2}}-2x + C$$

Final Answer

$$\boxed{\;\int (\sin^{-1}x)^{2}\;dx = x(\sin^{-1}x)^{2}+2\sin^{-1}x\sqrt{1-x^{2}}-2x + C\;}$$

Build stronger problem-solving skills with more worked examples and concise notes from Anand Classesโ€”perfect for CBSE and JEE revision.

โฌ…๏ธ Integrals NCERT Solutions Exercise 7.6 Chapter-7 Class 12 Math PDF Free Download (Set-2) Exercise 7.5 NCERT Solutions (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS