Limits And Derivatives NCERT Solutions Exercise 12.2 Class 11 PDF Download (Set-3)

⭐⭐⭐⭐✩ (4.7/5 from 47832 reviews)

NCERT Question 10 : Find the derivative of $\cos x$ from first principle.

Solution:
Given,
$$f(x) = \cos x$$

So,
$$f(x+h) = \cos(x+h)$$

Using first principle:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$

Substitute values:
$$f'(x) = \lim_{h \to 0} \frac{\cos(x+h) – \cos x}{h}$$

Using the trigonometric identity:
$$\cos A – \cos B = -2 \sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Let $A = x+h$ and $B = x$
$$\cos(x+h) – \cos x = -2 \sin\left(\frac{(x+h)+x}{2}\right)\sin\left(\frac{(x+h)-x}{2}\right)$$
$$ = -2 \sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)$$

So,
$$f'(x) = \lim_{h \to 0} \dfrac{-2 \sin\left(\dfrac{2x+h}{2}\right)\sin\left(\dfrac{h}{2}\right)}{h}$$

Now multiply and divide by 2:
$$f'(x) = \lim_{h \to 0} \left[-2 \sin\left(\dfrac{2x+h}{2}\right)\right] \cdot \lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{h} \cdot 2$$

Rewrite:
$$f'(x) = \lim_{h \to 0} \left[-\sin\left(\dfrac{2x+h}{2}\right)\right] \cdot \lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}$$

We know:
$$\lim_{y \to 0} \frac{\sin y}{y} = 1$$

Thus:
$$f'(x) = -\sin\left(\frac{2x+0}{2}\right) \cdot 1$$

$$f'(x) = -\sin x$$

Final Answer

$$\boxed{f'(x) = -\sin x}$$

Perfect for Class 11–12 Calculus and JEE preparation — learn derivatives from basics with Anand Classes! 🚀


NCERT Question 11(i). Find the derivative of $ \sin x\cos x $ from first principle

Solution:
Let
$$f(x)=\sin x\cos x.$$

Then
$$f(x+h)=\sin(x+h)\cos(x+h).$$

From first principle,
$$ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{\sin(x+h)\cos(x+h)-\sin x\cos x}{h}.$$

Use the product-to-sum identity $$ \sin A\cos B=\tfrac{1}{2}\big(\sin(A+B)+\sin(A-B)\big) $$
Applying it to both terms,
$$ \sin(x+h)\cos(x+h)=\tfrac{1}{2}\sin(2x+2h)$$

$$\sin x\cos x=\tfrac{1}{2}\sin(2x).$$

So
$$ f'(x)=\lim_{h\to 0}\frac{\tfrac{1}{2}\sin(2x+2h)-\tfrac{1}{2}\sin(2x)}{h}$$

$$f'(x)=\tfrac{1}{2}\lim_{h\to 0}\frac{\sin(2x+2h)-\sin(2x)}{h}.$$

Use the identity $$\sin A-\sin B=2\cos\big(\dfrac{A+B}{2}\big)\sin\big(\dfrac{A-B}{2}\big)$$ with $A=2x+2h$ and $B=2x$:
$$
\sin(2x+2h)-\sin(2x)=2\cos(2x+h)\sin(h).
$$

Thus
$$ f'(x)=\tfrac{1}{2}\lim_{h\to 0}\frac{2\cos(2x+h)\sin(h)}{h}$$

$$ f'(x) =\lim_{h\to 0}\cos(2x+h)\cdot\frac{\sin(h)}{h}$$

Since $\displaystyle\lim_{h\to 0}\frac{\sin(h)}{h}=1$ and $\displaystyle\lim_{h\to 0}\cos(2x+h)=\cos(2x)$, we get
$$
f'(x)=\cos(2x)\cdot 1=\cos(2x).
$$

$$\boxed{\dfrac{d}{dx}\big(\sin x\cos x\big)=\cos(2x)}$$

Top-quality worked calculus solutions and practice material by Anand Classes — ideal for CBSE and JEE revision.


NCERT Question 11 (ii) : Find the derivative of sec x from first principle.

Solution:
Let
$ f(x) = \sec(x) $

Then,
$ f(x+h) = \sec(x+h) $

Using the first principle of derivative:

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}
$$

$$
f'(x) = \lim_{h \to 0} \frac{\sec(x+h) – \sec(x)}{h}
$$

Rewrite using $\sec(x) = \dfrac{1}{\cos(x)}$:

$$
f'(x) = \lim_{h \to 0} \dfrac{\dfrac{1}{\cos(x+h)} – \dfrac{1}{\cos(x)}}{h}
$$

Take LCM:

$$
f'(x) = \lim_{h \to 0} \frac{\cos(x) – \cos(x+h)}{h \cos(x+h)\cos(x)}
$$

Use identity:
$\cos A – \cos B = -2 \sin\Big(\frac{A+B}{2}\Big)\sin\Big(\frac{A-B}{2}\Big)$

Let $A = x+h$ and $B = x$:

$$
\cos(x) – \cos(x+h)
= 2 \sin\Big(\frac{2x+h}{2}\Big)\sin\Big(\frac{h}{2}\Big)
$$

So:

$$
f'(x) =
\lim_{h \to 0}
\frac{2 \sin\left(\dfrac{2x+h}{2}\right)\sin\left(\dfrac{h}{2}\right)}
{h \cos(x+h)\cos(x)}
$$

Separate limits:

$$
f'(x) =
\lim_{h \to 0}
\frac{2\sin\left(x + \dfrac{h}{2}\right)}{\cos(x+h)\cos(x)}
\cdot
\lim_{h \to 0}
\frac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}}
$$

We know:

$$
\lim_{h \to 0} \dfrac{\sin\left(\dfrac{h}{2}\right)}{\dfrac{h}{2}} = 1
$$

Now take the limit:

$$
f'(x) =
\dfrac{2 \sin(x)}{\cos^2(x)}
$$

Use

$\dfrac{\sin(x)}{\cos(x)} = \tan(x)$

$\dfrac{1}{\cos(x)} = \sec(x)$

$$
f'(x) = \sec(x)\tan(x)
$$

✅ Final Answer

$$
\boxed{f'(x) = \sec(x)\tan(x)}
$$


NCERT Question 11 (iii) : Find the derivative of $5\sec x + 4\cos x$

Solution:
Let
$$f(x) = 5\sec x + 4\cos x$$

Differentiate both sides:

$$
f'(x) = \frac{d}{dx}(5\sec x) + \frac{d}{dx}(4\cos x)
$$

Using standard derivatives:

$\frac{d}{dx}(\sec x) = \sec x \tan x$

$\frac{d}{dx}(\cos x) = -\sin x$

So,

$$
f'(x) = 5(\sec x \tan x) + 4(-\sin x)
$$

$$
f'(x) = 5\sec x \tan x – 4\sin x
$$

✅ Final Answer

$$
\boxed{f'(x) = 5\sec x \tan x – 4\sin x}
$$

Enhance your calculus skills with Anand Classes — trusted for board and competitive exam preparation!


Question 11 (iv). Find the derivative of cosec x from first principle

Solution:
Let
$$f(x)=\csc x=\frac{1}{\sin x}.$$

Using the first principle,
$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
=\lim_{h\to 0}\frac{\csc(x+h)-\csc x}{h}.
$$

Write in sine form and combine:
$$
f'(x) =\lim_{h\to 0}\dfrac{\dfrac{1}{\sin(x+h)}-\dfrac{1}{\sin x}}{h}$$

$$f'(x) =\lim_{h\to 0}\dfrac{\sin x-\sin(x+h)}{h\sin x\sin(x+h)}.$$

Use the identity $$\sin A-\sin B=2\cos\big(\frac{A+B}{2}\big)\sin\big(\frac{A-B}{2}\big)$$ with $A=x$ and $B=x+h$:

$$
\sin x-\sin(x+h)= -2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right).
$$

Substitute:
$$
f'(x)=\lim_{h\to 0}\frac{-2\cos\big(x+\frac{h}{2}\big)\sin\big(\frac{h}{2}\big)}
{h\sin x\sin(x+h)}.
$$

Rearrange factors:
$$
f'(x)= -\lim_{h\to 0}\frac{\cos\big(x+\frac{h}{2}\big)}{\sin x\sin(x+h)}
\cdot\frac{2\sin\big(\frac{h}{2}\big)}{h}.
$$

Since $\displaystyle\lim_{h\to 0}\frac{2\sin(h/2)}{h}=1$ and

$\displaystyle\lim_{h\to 0}\cos\big(x+\tfrac{h}{2}\big)=\cos x$, and

$\lim_{h\to 0}\sin(x+h)=\sin x$, we get
$$
f'(x)= -\frac{\cos x}{\sin x\cdot\sin x}
= -\frac{\cos x}{\sin^2 x}.
$$

Write in standard trigonometry form:
$$
f'(x)=-\csc x\cot x.
$$

$$\boxed{,\dfrac{d}{dx}(\csc x) = -\csc x\cot x,}$$

Download compact derivative notes by Anand Classes — ideal for CBSE and JEE calculus practice.


NCERT Question 11 (v). Find the derivative of $(3 \cot x + 5 \csc x)$

Solution :
Let
$$ f(x) = 3\cot x + 5\csc x. $$

Taking derivative on both sides:
$$ f'(x) = \frac{d}{dx}(3\cot x) + \frac{d}{dx}(5\csc x). $$

Using standard derivatives,
$$ \frac{d}{dx}(\cot x) = -\csc^2 x $$
and
$$ \frac{d}{dx}(\csc x) = -\csc x \cot x. $$

So,
$$
f'(x) = 3(-\csc^2 x) + 5(-\csc x \cot x).
$$

Therefore,
$$
f'(x) = -3\csc^2 x – 5\csc x \cot x.
$$

$$
\boxed{f'(x) = -3\csc^2 x – 5\csc x \cot x}
$$

Perfect for JEE and CBSE — Download derivative notes by Anand Classes for more practice!


NCERT Question 11 (v). Find derivative of $(3\cot x + 5\csc x)$ using first principle

Solution :
Let
$$f(x) = 3 \cot x + 5 \csc x$$

Using first principle,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) – f(x)}{h}$$

So,
$$f'(x) = \lim_{h \to 0} \frac{3\cot(x+h) + 5\csc(x+h) – 3\cot x – 5\csc x}{h}$$

Separate terms,
$$f'(x) = 3 \lim_{h \to 0} \frac{\cot(x+h) – \cot x}{h} + 5 \lim_{h \to 0} \frac{\csc(x+h) – \csc x}{h}$$

Using known first principle limits,
$$\lim_{h \to 0} \frac{\cot(x+h) – \cot x}{h} = -\csc^2 x$$
$$\lim_{h \to 0} \frac{\csc(x+h) – \csc x}{h} = -\csc x \cot x$$

Substituting,
$$f'(x) = 3(-\csc^2 x) + 5(-\csc x \cot x)$$

Final answer:
$$\boxed{f'(x) = -3\csc^2 x – 5\csc x \cot x}$$

High-quality calculus notes by Anand Classes — perfect for Class 11 & 12 CBSE and JEE preparation 🚀📘


Question 11(vi). Find the derivative of $5\sin x – 6\cos x + 7$ using first principle

Solution
Let
$$f(x)=5\sin x – 6\cos x + 7.$$

Then
$$f(x+h)=5\sin(x+h)-6\cos(x+h)+7.$$

By the first principle,
$$ f'(x) =\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} $$

$$ f'(x) =\lim_{h\to 0}\frac{5[\sin(x+h)-\sin x]-6[\cos(x+h)-\cos x]}{h}.$$

Use the trigonometric identities
$$\sin(A)-\sin(B)=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right),$$
$$\cos(A)-\cos(B)=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right).$$

Apply them with $A=x+h,\ B=x$:
$$\sin(x+h)-\sin x=2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right),$$
$$\cos(x+h)-\cos x=-2\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right).$$

Substitute into the limit:
$$
f'(x)=\lim_{h\to 0}\frac{5\cdot 2\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)
-6\cdot\big(-2\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)\big)}{h}.
$$

Simplify the numerator:
$$
f'(x)=\lim_{h\to 0}\frac{\big(10\cos\left(x+\tfrac{h}{2}\right)
+12\sin\left(x+\tfrac{h}{2}\right)\big)\sin\left(\tfrac{h}{2}\right)}{h}.
$$

Write $\dfrac{\sin(h/2)}{h}=\dfrac{1}{2}\cdot\dfrac{\sin(h/2)}{h/2}$ to use the standard limit:
$$
f'(x)=\lim_{h\to 0}\left(10\cos\left(x+\tfrac{h}{2}\right)+12\sin\left(x+\tfrac{h}{2}\right)\right)\cdot\frac{1}{2}\cdot\frac{\sin(h/2)}{h/2}.
$$

Now take limits:
$$
\lim_{h\to 0}\frac{\sin(h/2)}{h/2}=1,\qquad
\lim_{h\to 0}\cos\left(x+\tfrac{h}{2}\right)=\cos x,\qquad
\lim_{h\to 0}\sin\left(x+\tfrac{h}{2}\right)=\sin x
$$

Therefore
$$
f'(x)=\frac{1}{2}\big(10\cos x + 12\sin x\big)=5\cos x + 6\sin x.
$$

$$\boxed{f'(x)=5\cos x + 6\sin x}$$

Download practice sheets and solved derivatives by Anand Classes — perfect for CBSE and JEE calculus revision.


Question 11(viii) : Find the derivative of $f(x)=2\tan x – 7\sec x$ using first principle

Solution:
Let

$$f'(x)=2\frac{d}{dx}(\tan x)-7\frac{d}{dx}(\sec x).$$

First compute $\dfrac{d}{dx}(\tan x)$ from first principle. Write $\tan x=\dfrac{\sin x}{\cos x}$.

$$
\frac{d}{dx}(\tan x)
=\lim_{h\to 0}\frac{\tan(x+h)-\tan x}{h}
=\lim_{h\to 0}\frac{\dfrac{\sin(x+h)}{\cos(x+h)}-\dfrac{\sin x}{\cos x}}{h}.
$$

Combine the fraction:
$$
\frac{\tan(x+h)-\tan x}{h}
=\frac{1}{h}\cdot\frac{\sin(x+h)\cos x-\sin x\cos(x+h)}{\cos(x+h)\cos x}.
$$

Use the identity $\sin A\cos B-\cos A\sin B=\sin(A-B)$ with $A=x+h,\ B=x$:
$$
\sin(x+h)\cos x-\sin x\cos(x+h)=\sin((x+h)-x)=\sin h.
$$

Thus
$$
\frac{\tan(x+h)-\tan x}{h}
=\frac{1}{h}\cdot\frac{\sin h}{\cos(x+h)\cos x}
=\frac{\sin h}{h}\cdot\frac{1}{\cos(x+h)\cos x}.
$$

Taking $h\to0$ and using $\lim_{h\to0}\dfrac{\sin h}{h}=1$ and $\lim_{h\to0}\cos(x+h)=\cos x$,
$$
\frac{d}{dx}(\tan x)=\frac{1}{\cos^2 x}=\sec^2 x.
$$

Next compute $\dfrac{d}{dx}(\sec x)$ from first principle. Write $\sec x=\dfrac{1}{\cos x}$.

$$
\frac{d}{dx}(\sec x)
=\lim_{h\to 0}\frac{\sec(x+h)-\sec x}{h}
=\lim_{h\to 0}\frac{\dfrac{1}{\cos(x+h)}-\dfrac{1}{\cos x}}{h}.
$$

Combine into one fraction:
$$
\frac{\sec(x+h)-\sec x}{h}
=\frac{1}{h}\cdot\frac{\cos x-\cos(x+h)}{\cos(x+h)\cos x}.
$$

Use the identity $\cos A-\cos B=-2\sin!\big(\tfrac{A+B}{2}\big)\sin!\big(\tfrac{A-B}{2}\big)$ with $A=x,\ B=x+h$:
$$
\cos x-\cos(x+h)=2\sin!\left(x+\tfrac{h}{2}\right)\sin!\left(\tfrac{h}{2}\right).
$$

So
$$
\frac{\sec(x+h)-\sec x}{h}
=\frac{2\sin!\left(x+\tfrac{h}{2}\right)}{\cos(x+h)\cos x}\cdot\frac{\sin(h/2)}{h}.
$$

Rewrite $\dfrac{\sin(h/2)}{h}=\dfrac{1}{2}\cdot\dfrac{\sin(h/2)}{(h/2)}$ and take limits. Using $\lim_{u\to0}\dfrac{\sin u}{u}=1$ and $\cos(x+h)\to\cos x$,
$$
\frac{d}{dx}(\sec x)
=\frac{2\sin x}{\cos^2 x}\cdot\frac{1}{2}
=\frac{\sin x}{\cos^2 x}
=\sec x\tan x.
$$

Now combine results:

$$
f'(x)=2\sec^2 x – 7\sec x\tan x.
$$

$$\boxed{,f'(x)=2\sec^2 x – 7\sec x\tan x,}$$

Practice full step-by-step derivative proofs and downloadable notes from Anand Classes — perfect for CBSE and JEE revision.

⬅️ Miscellaneous Exercise (Set-1) Exercise 12.2 (Set-2) ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS