NCERT Solutions Complex Numbers & Quadratic Equations Miscellaneous Exercise

⭐⭐⭐⭐⭐ (5/5 from 34865 reviews)

Q.1 : Evaluate: $$([i^{18} + \frac{1}{i^{25}}]^3)$$

Solution : Given
$$
([i^{18} + \frac{1}{i^{25}}]^3)
$$

Rewrite powers as multiples of 4:

$$
i^{18} = i^{4 \cdot 4 + 2} = (i^4)^4 \cdot i^2
$$

$$
(1/i)^{25} = 1/i^{25} = 1/(i^{4\cdot6 + 1}) = 1/((i^4)^6 \cdot i)
$$

Since ($i^4 = 1$) and ($i^2 = -1$):

$$
[i^{18} + (1/i)^{25}]^3 = [-1 + 1/i]^3
$$

Rationalize (1/i):

$$
\frac{1}{i} \cdot \frac{i}{i} = \frac{i}{i^2} = -i
$$

Hence:

$$
[-1 + 1/i]^3 = (-1 – i)^3
$$

Expand the cube:

$$
(-1 – i)^3 = (-1)^3 + 3(-1)^2(-i) + 3(-1)(-i)^2 + (-i)^3
$$

Compute powers of (i) (($i^2=-1, i^3=-i$)):

$$
(-1 – i)^3 = -1 – 3i + 3 + i = 2 – 2i
$$

Answer:
$$(\boxed{2 – 2i})$$


Q.2 : Prove that $$Re(z_1 \;z_2) = Re z_1 \;Re z_2 – Im z_1\; Im z_2$$

Solution : Let
$$
z_1 = x_1 + i y_1, \quad z_2 = x_2 + i y_2
$$

Multiply:

$$
z_1 z_2 = (x_1 + i y_1)(x_2 + i y_2)
$$

Step by step:

$$
z_1 z_2 = x_1 x_2 + i x_1 y_2 + i x_2 y_1 + i^2 y_1 y_2
$$

Since ($i^2=-1$):

$$
z_1 z_2 = (x_1 x_2 – y_1 y_2) + i(x_1 y_2 + x_2 y_1)
$$

Hence:

$$
Re(z_1 z_2) = x_1 x_2 – y_1 y_2
$$

Also:

$$
Re z_1 \;Re z_2 – Im z_1\; Im z_2 = x_1 x_2 – y_1 y_2
$$

Hence proved.

$$
Re(z_1 z_2) = Re z_1 \;Re z_2 – Im z_1\; Im z_2
$$

Note : Similar property :

$$
Im(z_1 z_2) = (x_1 y_2 + x_2 y_1)
$$

$$
Re z_1 \;Im z_2 + Re z_2\; Im z_1 = (x_1 y_2 + x_2 y_1)
$$

$$
Im(z_1 z_2) = Re z_1 \;Im z_2 + Re z_2\; Im z_1
$$


Q.3 : Reduce to standard form:
$$
\left(\frac{1}{1 – 4i} – \frac{2}{i + 1}\right) \frac{3 – 4i}{5 + i}
$$

Solution

Step 1: Compute the bracket:

$$
\frac{1}{1 – 4i} – \frac{2}{i + 1} = \frac{-1 + 9i}{5 – 3i}
$$

Step 2: Multiply by $(\frac{3 – 4i}{5 + i})$

$$
\frac{-1 + 9i}{5 – 3i} \cdot \frac{3 – 4i}{5 + i}
$$

Step 3: Split numerator and denominator:

Numerator:
$(-1 + 9i)(3 – 4i)=$
$= (-1 \cdot 3) + (-1 \cdot -4i) + (9i \cdot 3) + (9i \cdot -4i) $
$= 33 + 31i$
Denominator:
$
(5 – 3i)(5 + i) = $
$=(5 \cdot 5) + (5 \cdot i) + (-3i \cdot 5) + (-3i \cdot i) $
$= 28 – 10i$

Step 4: Rationalize:

$$
\frac{33 + 31i}{28 – 10i} \cdot \frac{28 + 10i}{28 + 10i} = \frac{614 + 1198i}{884}
$$

Step 5: Simplify:

$$
\frac{614 + 1198i}{884} = \frac{307}{442} + i \frac{599}{442}
$$

Answer:

$$
\boxed{\frac{307}{442} + i \frac{599}{442}}
$$


Q.4 : If
$$
x – i y = \sqrt{\frac{{a – i b}}{c – i d}}
$$
prove that
$$
(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}.
$$

Solution

Let $u=a-i b$ and $v=c-i d$. Then
$$
x – i y = \sqrt{\frac{{u}}{v}}
$$

$$
x – i y = \frac{\sqrt{u}}{\sqrt{v}}.
$$

Take modulus of both sides. Using $|\sqrt{Z}|=\sqrt{|Z|}$ and $|Z_1/Z_2|=|Z_1|/|Z_2|$ we get
$$
|x – i y| = \frac{|\sqrt{u}|}{|\sqrt{v}|} = \frac{\sqrt{|u|}}{\sqrt{|v|}}
= \sqrt{\frac{|u|}{|v|}}.
$$

Square both sides:
$$
|x – i y|^2 = \frac{|u|}{|v|}.
$$

But $|x – i y|^2 = x^2 + y^2$, and
$$
|u| = |a – i b| = \sqrt{a^2 + b^2},\qquad
|v| = |c – i d| = \sqrt{c^2 + d^2}.
$$

Therefore
$$
x^2 + y^2 = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}
= \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}.
$$

Finally square both sides to obtain the required identity:
$$
(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}.
$$


Q.5 : If $z_1 = 2 – i$, $z_2 = 1 + i$, find $\left|\dfrac{z_1 + z_2 + 1}{z_1 – z_2 + 1}\right|$

Solution:

Given, $z_1 = 2 – i$, $z_2 = 1 + i$

$$
\left|\dfrac{z_1 + z_2 + 1}{z_1 – z_2 + 1}\right|
= \left|\dfrac{(2 – i) + (1 + i) + 1}{(2 – i) – (1 + i) + 1}\right|
$$

$$
= \left|\dfrac{4}{2 – 2i}\right|
= \left|\dfrac{4}{2(1 – i)}\right|
= \left|\dfrac{2}{1 – i} \times \dfrac{1 + i}{1 + i}\right|
$$

$$
= \left|\dfrac{2(1 + i)}{1^2 – i^2}\right|
= \left|\dfrac{2(1 + i)}{1 + 1}\right| \quad [i^2 = -1]
$$

$$
= \left|\dfrac{2(1 + i)}{2}\right|
= |1 + i|
= \sqrt{1^2 + 1^2}
= \sqrt{2}
$$

Hence, the value of $\left|\dfrac{z_1 + z_2 + 1}{z_1 – z_2 + 1}\right|$ is $\sqrt{2}$.


Q.6 : If$$a + i b = \frac{(x + i)^2}{2x^2 + 1}$$ prove that
$$
a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^2 + 1)^2}.
$$

Solution : Given

$$ a + i b = \frac{(x + i)^2}{2x^2 + 1}$$

$$ a + i b = \frac{x^2 + i^2 + 2 x i}{2x^2 + 1}$$

$$ a + i b = \frac{x^2 – 1 + i 2x}{2x^2 + 1}$$

$$ a + i b = \frac{x^2 – 1}{2x^2 + 1} + i \frac{2x}{2x^2 + 1}$$

On comparing real and imaginary parts:

$$
a = \frac{x^2 – 1}{2x^2 + 1}, \qquad b = \frac{2x}{2x^2 + 1}.
$$

Now compute $a^2 + b^2$:

$$ a^2 + b^2 = \left(\frac{x^2 – 1}{2x^2 + 1}\right)^2 + \left(\frac{2x}{2x^2 + 1}\right)^2 $$

$$ a^2 + b^2 = \frac{(x^2 – 1)^2 + (2x)^2}{(2x^2 + 1)^2}.$$

Simplify numerator:

$ (x^2 – 1)^2 + (2x)^2 = x^4 – 2x^2 + 1 + 4x^2 $
$ (x^2 – 1)^2 + (2x)^2= x^4 + 2x^2 + 1 $
$ (x^2 – 1)^2 + (2x)^2 = (x^2 + 1)^2$

Hence,

$$
a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^2 + 1)^2}.
$$

Proved.


Q.7 : Let $z_1 = 2 – i, \quad z_2 = -2 + i.$
Find:(i) $\operatorname{Re}\left(\dfrac{z_1 z_2}{\overline{z_1}}\right)$ (ii) $\operatorname{Im}\left(\dfrac{1}{z_1 \overline{z_2}}\right)$

Solution : Given:
$$
z_1 = 2 – i, \quad z_2 = -2 + i
$$

(i) Compute $z_1 z_2$:

$ z_1 z_2 = (2 – i)(-2 + i) $
$ z_1 z_2 = -4 + 2i + 2i – i^2 $
$ z_1 z_2 = -4 + 4i – (-1) $
$ z_1 z_2 = -3 + 4i $

Now, $\overline{z_1} = 2 + i.$

Therefore,
$$
\dfrac{z_1 z_2}{\overline{z_1}} = \dfrac{-3 + 4i}{2 + i}.
$$

Multiply numerator and denominator by $(2 – i)$:
$$\dfrac{z_1 z_2}{\overline{z_1}} = \dfrac{(-3 + 4i)(2 – i)}{(2 + i)(2 – i)} $$

$$\dfrac{z_1 z_2}{\overline{z_1}}= \dfrac{-6 + 3i + 8i – 4i^2}{2^2 + 1^2} $$

$$\dfrac{z_1 z_2}{\overline{z_1}}= \dfrac{-6 + 11i – 4(-1)}{5} $$

$$\dfrac{z_1 z_2}{\overline{z_1}}= \dfrac{-2 + 11i}{5}$$

Hence,
$$\operatorname{Re}\left(\dfrac{z_1 z_2}{\overline{z_1}}\right) = \dfrac{-2}{5} $$

(ii) Compute:

$$
\dfrac{1}{z_1 \overline{z_2}} = \dfrac{1}{(2 – i)(-2 – i)}.
$$

Now,

$$(2 – i)(-2 – i) = -4 – 2i + 2i + i^2 $$

$$(2 – i)(-2 – i) = -4 – 1 = -5$$

Therefore,
$$\dfrac{1}{z_1 \overline{z_2}} = \dfrac{1}{-5} = -\dfrac{1}{5}$$

This is a purely real number.

Hence,
$$
\operatorname{Im}\left(\dfrac{1}{z_1 \overline{z_2}}\right) = 0.
$$

Final Answers:
(i) $\operatorname{Re}\left(\dfrac{z_1 z_2}{\overline{z_1}}\right) = \dfrac{-2}{5}$
(ii) $\operatorname{Im}\left(\dfrac{1}{z_1 \overline{z_2}}\right) = 0$


Question 8. Find the real numbers x and y if $(x – iy)(3 + 5i)$ is the conjugate of $-6 – 24i$.

Solution: Let

$$z = (x – iy)(3 + 5i)$$

Then,

$$z = 3x + 5xi – 3yi – 5yi^2$$

Since $i^2 = -1$,

$$
z = 3x + 5xi – 3yi + 5y
$$

$$
z = (3x + 5y) + i(5x – 3y)
$$

Therefore,

$$
\overline{z} = (3x + 5y) – i(5x – 3y)
$$

Also given that $\overline{z} = -6 – 24i$

So,

$$
(3x + 5y) – i(5x – 3y) = -6 – 24i
$$

By comparing real and imaginary parts:

$$
3x + 5y = -6 \quad \text{…(i)}
$$

$$
5x – 3y = 24 \quad \text{…(ii)}
$$

Multiply (i) by 3 and (ii) by 5:

$$
9x + 15y = -18
$$

$$
25x – 15y = 120
$$

Add both equations:

$$
(9x + 25x) + (15y – 15y) = -18 + 120
$$

$$
34x = 102
$$

$$
x = \frac{102}{34} = 3
$$

Substitute $x = 3$ in equation (i):

$$
3(3) + 5y = -6
$$

$$
9 + 5y = -6
$$

$$
5y = -15
$$

$$
y = -3
$$

Hence, the values of $x$ and $y$ are:

$$
x = 3, \quad y = -3
$$


Q.9 : Find the modulus of $\dfrac{1+i}{1-i} – \dfrac{1-i}{1+i}$

Solution:

$$
\dfrac{1+i}{1-i} – \dfrac{1-i}{1+i} = \dfrac{(1+i)^2 – (1-i)^2}{(1-i)(1+i)}
$$

Now,

$$
(1+i)^2 = 1 + i^2 + 2i = 2i
$$

and

$$
(1-i)^2 = 1 + (-i)^2 + 2(1)(-i) = -2i
$$

So,

$$
\dfrac{(1+i)^2 – (1-i)^2}{(1-i)(1+i)} = \dfrac{2i – (-2i)}{1^2 + 1^2} = \dfrac{4i}{2} = 2i
$$

Therefore,

$$
\left|\dfrac{1+i}{1-i} – \dfrac{1-i}{1+i}\right| = |2i| = \sqrt{(2)^2} = 2
$$

Hence, the modulus is 2.


Q.10 : If $(x + iy)^3 = u + iv$, then show that $\dfrac{u}{x} + \dfrac{v}{y} = 4(x^2 – y^2)$

Solution:

Given,
$$(x + iy)^3 = u + iv$$

Expanding the left-hand side:

$$
x^3 + (iy)^3 + 3x(iy)(x + iy) = u + iv
$$

Simplifying:

$$
x^3 + i^3y^3 + 3x^2yi + 3xy^2i^2 = u + iv
$$

Since $i^2 = -1$ and $i^3 = -i$, we get

$$
x^3 – iy^3 + 3x^2yi – 3xy^2 = u + iv
$$

Separating real and imaginary parts:

$$
(x^3 – 3xy^2) + i(3x^2y – y^3) = u + iv
$$

On comparing,
$$u = x^3 – 3xy^2, \quad v = 3x^2y – y^3$$

Now,

$$
\dfrac{u}{x} + \dfrac{v}{y} = \dfrac{x^3 – 3xy^2}{x} + \dfrac{3x^2y – y^3}{y}
$$

Simplify each term:

$$
\dfrac{u}{x} + \dfrac{v}{y} = (x^2 – 3y^2) + (3x^2 – y^2)
$$

$$
\dfrac{u}{x} + \dfrac{v}{y} = 4x^2 – 4y^2
$$

$$
\dfrac{u}{x} + \dfrac{v}{y} = 4(x^2 – y^2)
$$

Therefore,

$$
\dfrac{u}{x} + \dfrac{v}{y} = 4(x^2 – y^2)
$$

Hence proved.


Q.11 : If $\alpha$ and $\beta$ are different complex numbers with $|\beta| = 1$, then find $$\left|\frac{\beta – \alpha}{1 – \overline{\alpha}\beta}\right|$$

Solution:

Assume $\alpha = a + ib$ and $\beta = x + iy$

Given: $|\beta| = 1$

So,
$$\sqrt{x^2 + y^2} = 1$$

which gives
$$x^2 + y^2 = 1 \quad \text{…(1)}$$

Now,
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right|
= \left| \frac{(x + iy) – (a + ib)}{1 – (a – ib)(x + iy)} \right|
$$

Simplify the numerator and denominator:
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right| = \left| \frac{(x – a) + i(y – b)}{(1 – ax – by) + i(bx – ay)} \right|
$$

We know that
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

Therefore,
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right|
= \frac{\sqrt{(x – a)^2 + (y – b)^2}}{\sqrt{(1 – ax – by)^2 + (bx – ay)^2}}
$$

Expanding both numerator and denominator:
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right| = \frac{\sqrt{x^2 + a^2 – 2ax + y^2 + b^2 – 2by}}{\sqrt{1 + a^2x^2 + b^2y^2 – 2ax + 2abxy – 2by + b^2x^2 + a^2y^2 – 2abxy}}
$$

Simplify:
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right| = \frac{\sqrt{(x^2 + y^2) + a^2 + b^2 – 2ax – 2by}}{\sqrt{1 + a^2(x^2 + y^2) + b^2(x^2 + y^2) – 2ax – 2by}}
$$

Using equation (1), $x^2 + y^2 = 1$,
$$
\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right|
= \frac{\sqrt{1 + a^2 + b^2 – 2ax – 2by}}{\sqrt{1 + a^2 + b^2 – 2ax – 2by}}= 1
$$

Hence,
$$
\boxed{\left| \frac{\beta – \alpha}{1 – \overline{\alpha}\beta} \right| = 1}
$$

Therefore, proved.


Q.12 : Find the number of non-zero integral solutions of the equation $|1 – i|^x = 2^x$.

Solution: We have, $$|1 – i|^x = 2^x$$

Now,
$$|1 – i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

So the equation becomes:
$$(\sqrt{2})^x = 2^x$$

Rewrite $\sqrt{2}$ as $2^{1/2}$:
$$(2^{1/2})^x = 2^x$$

Which gives:
$$2^{x/2} = 2^x$$

Comparing the exponents:
$$\frac{x}{2} = x$$

Solving for $x$:
$$2x – x = 0 \quad \Rightarrow \quad x = 0$$

Hence, $0$ is the only integral solution.

Therefore, the number of non-zero integral solutions is: $\boxed{0}$


Q.13 : If $(a + ib)(c + id)(e + if)(g + ih) = A + iB$,
then show that
$(a^2 + b^2)(c^2 + d^2)(e^2 + f^2)(g^2 + h^2) = A^2 + B^2$

Solution:

Given:
$$(a + ib)(c + id)(e + if)(g + ih) = A + iB$$

Taking the modulus of both sides:
$$|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|$$

Using the property of modulus:
$$|(a + ib)| \cdot |(c + id)| \cdot |(e + if)| \cdot |(g + ih)| = |A + iB|$$

Now,
$$\sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \cdot \sqrt{e^2 + f^2} \cdot \sqrt{g^2 + h^2} = \sqrt{A^2 + B^2}$$

Squaring both sides, we get:
$$(a^2 + b^2)(c^2 + d^2)(e^2 + f^2)(g^2 + h^2) = A^2 + B^2$$

Hence, proved.


Q.14 : Find the least positive integral value of $m$ if
$$\left(\frac{1+i}{1-i}\right)^m = 1$$

Solution:

We have:
$$\left(\frac{1+i}{1-i}\right)^m = 1$$

Multiply numerator and denominator by the conjugate of the denominator:
$$\left(\frac{1+i}{1-i} \cdot \frac{1+i}{1+i}\right)^m = 1$$
$$\left(\frac{(1+i)^2}{1^2 + 1^2}\right)^m = 1$$
$$\left(\frac{1 – 1 + 2i}{2}\right)^m = 1$$
$$\left(\frac{2i}{2}\right)^m = 1$$
$$ (i)^m = 1 $$

Since $i^4 = 1$, we have:
$$ m = 4k \quad \text{where $k$ is an integer} $$

The least positive integer is $k = 1$, so:
$$ m = 4 \times 1 = 4 $$

Hence, the least positive integral value of $m$ is: $\boxed{4}$

⬅️ NCERT Solutions Exercise-3.1 NCERT Solutions Ex-4.1 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS